User and Developer's guide for

(Physical-chemical property based motif analyzer)
Version 2.0
(C) 2004 Bin Zhou, Venkatarajan S. Mathura \& Prof. Werner Braun

UTMB, Galveston

CONTENTS

1 INTRODUCTION 2
2 DISTRIBUTION 4
3 VERSION AND HISTORY 5
4 COPYRIGHT AND LIABILITY 6
5 INSTALLATION AND REQUIREMENTS 8
6 TERMS AND DEFINITIONS 12
7 INPUT/OUTPUT 13
7.1 INPUT FILES 13
7.1.1 Multiple alignment file 13
7.1.2 Sequence Database file 13
7.2 OUTPUT FILES: 13
7.2.1 Log file (*.PCPlog) 14
7.2.2 Profile files (*.PCPgprf, *.PCPprf) 15
7.2.3 List files (*.PCPNlist, *PCPSlist) 19
7.2.4 Score file (*.PCPscore) 20
7.2.5 Result file (*.PCPres) 20
7.3 Input Parameters 21
8 USING PCPMer 22
9 PROGRAMER GUIDE(Version 1.0)* 24
9.1 MODULES AND ROUTINES 24
9.2 FLOWCHART OF PROGRAM OPERATION 25
9.3 MODULE AND SUBROUTINE DETAILS 26

1 INTRODUCTION

PCPMer
(Physical-chemical property based motif analyzer)
Version 2.0
(C) 2004 The University of Texas System
Bin Zhou, Venkatarajan S. Mathura \& Prof.Werner Braun
UTMB, Galveston

PCPMer is a software package that can be applied to identify important sequence regions that are evolutionarily conserved in terms of their physical-chemical properties. A multidimensional analysis of 237 relevant physical-chemical properties of amino acids revealed that 5 dimensional representations are possible (PCP descriptors or vectors E1E5)[1]. This five-dimensional property space can be constructed such that the amino acids are in a similar spatial distribution to that in the original high-dimensional property space. Properties that correlate well with the five major components were hydrophobicity, size, preferences for amino acids to occur in alpha-helices, number of degenerate triplet codons and the frequency of occurrence of amino acid residues in betastrands. Distances computed for pairs of amino acids in the five-dimensional property space are highly correlated with corresponding scores from similarity matrices derived from sequence and 3D structure comparison. PCPMer calculates conservation of these five vectors using a multiple alignment. It calculates relative entropy of distribution of five vectors in equally spaced five bins between the protein family sequence of interest and random occurrence of amino acids (natural frequency). The relative entropy (R) cutoff is used to filter out insignificant regions in the protein sequence. In order to group significantly conserved positions, empirical parameters like G and L-cutoff are used [2]. G-cutoff restricts the number of insignificant positions between two significant positions
in a motif and L-cutoff excludes motifs smaller than the L significant members. A bayesian based scoring scheme that uses distribution of scores in the true positive and the database of interest helps in identifying related protein sequences that shares similar motifs. Thus PCPMer can be used for both identifying motifs in a protein and data mine for related members in sequence database. Currently the following functions are included in PCPMer:

1. Create Motifs
2. Search for motifs and related sequence in a database
3. Search for the highest scoring motifs in a set of sequence
4. Create motifs and search database
5. Create motifs and score set of sequences
6. Create macro file of MOLMOL

REFERENCES

[1]
Venkatarajan, M.S., Braun W., 2001, "New quantitative descriptors for amino acids based on multidimensional scaling of a large number of physical-chemical properties", J Mol Modeling 7:445-453
[2]
Venkatarajan, M.S., Schein, C. H., Braun W., 2003, "Identifying physical chemical property based sequence motifs in protein families and superfamilies: Application to DNase I related endonuclease", Bioinformatics vol. 19:1381-1390, 2003.
[3]
Venkatarajan, M. S. 2002 "Automated generation of sequence motifs and 3D models for proteins and their applications" Doctoral Disseration, University of Texas Medical Branch, Galveston.

2 DISTRIBUTION

PCPMer can be obtained freely for academic research purpose. This package is not allowed to be modified or redistributed without the knowledge of the authors. Separate commercial license is available. To obtain the software please send an email or contact:

Prof. Werner Braun

Sealy Center for Structural Biology, University of Texas Medical Branch, 301 University Blvd.
Galveston, TX 77555.
email: werner@newton.utmb.edu
phone: 409-7476810
fax: 409-7476850

3 VERSION AND HISTORY

Version 1.0 (2003)
Version 2.0 (2004) parallel code, optimization of entropy values
\& molmol display of motifs
and more details will be added those section in next releases.

4 COPYRIGHT AND LIABILITY

COPYRIGHT:

PCPMer is copyrighted to Dr. Bin Zhou, Dr. Venkatarajan S. Mathura and Werner Braun at the University of Texas Medical Branch, Galveston a component of The University of Texas System. This program is not covered under public license and hence several restrictions apply.
?? The authors have exclusive rights to determine appropriate users and usage.
?? The package must be requested using the 'request form' and should be used only by the person for the purpose it was requested.
?? Any intention of modifying the software must be informed to the authors in written and must be approved by the authors.
?? Redistribution of this software in any form is prohibited.
?? This software (PCPMer) and its components may not be used for commercial purpose unless written approval is granted in writing from the authors.
?? It is the intention of the authors to nake this program available freely to academic institution for research purpose only.
?? Appropriate citations of this program and related publications must be made in cases where the program is used.

LIABILITY:

IN NO EVENT SHALL THE AUTHORS OR ANY INSTITUTIONS IN WHICH THEY WORK (INCLUDING, BUT NOT LIMITED TO, UNIVERSITY OF TEXAS SYSTEM) BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE

AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE AUTHORS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE AUTHOR HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

5 INSTALLATION AND REQUIREMENTS

Hardware requirement:

?? Atleast Pentium III processor or higher.
?? RAM atleast 128MB.

Software requirement:

?? Operating systems: LINUX, UNIX, IRIX.
?? PERL 5.0 or higher versions
?? C shell preferred

INSTRUCTIONS:

```
To unzip and untar the distribution, type the following.
    $unixprompt> gunzip PCPMerpack2.0.tar.gz
and then type
    $unixprompt> tar -xvf PCPMerpack2.0.tar
This will create a directory PCPMerpack. Change current
directory to PCPMerpack.
```

INSTALL:

Basically, to build and install PCPMer from sources, you enter three commands:
\$. /configure
\$ make
\$ make install

The 'configure' shell script attempts to guess correct values for various system-dependent variables used during compilation. It uses those values to create a 'Makefile' in each directory of the PCPMer package. It also creates some '.h' files containing system-dependent definitions. Finally, it creates a shell script 'config.status' that you can run in the future to recreate the current configuration, a file 'config.cache' that saves the results of its tests to speed up reconfiguring, and a file ‘config.log' containing compiler output (useful mainly for debugging 'configure').

If you need to do unusual things to compile the PCPMer package, please try to figure out how 'configure' could check whether to do them, and mail us diffs or instructions to so they can be considered for the next release. If at some point 'config.cache' contains results you don't want to keep, you may remove or edit it.

The file 'configure.in' is used to create 'configure' by a program

```
called `autoconf'. You only need `configure.in' if you want to change
it or regenerate 'configure' using a newer version of 'autoconf'.
    1. `cd' to the directory containing the PCPMER package source code
        type
            $ ./configure
        to configure PCPMER for your system. If you're using `csh' on an
        old version of System V, you might need to type
            % sh ./configure
    instead to prevent `csh' from trying to execute `configure'
itself.
    If you're building PCPMER on Windows using CYGWIN, type
        $ bash ./configure
    instead.
    Running `configure' takes awhile. While running, it prints some
    messages telling which features it is checking for.
    If `configure' reports an error or some bad result, check the
    files `config.log' for diagnostics.
2. Check the `Makefile', `PCPMer', and `config.h' files generated by
    `configure'. Most settings should be guessed correctly by the
    `configure' program. You may, however, wish to edit the
    settings, or re-run `configure' with special options.
```

3. Now type
\$ make
to build PCPMER. Any modern MAKE flavors should do, but for incremental reconstruction, GNU MAKE is required on most systems.
4. Check the 'make' output for compiler errors and warnings.

If you see any compiler errors or warnings, please see the sections 'Warnings during build' and 'Errors during build', below.
5. Type
\$ make install

This installs

- the PCPMER executable ‘PCPMer' in some public place (usually in ‘/usr/local/bin/')

6. You can remove the program binaries, libraries and object files
from the source directory by typing
\$ make clean
7. You can remove PCPMER from your system by typing
\$ make uninstall

This undoes all effects of a previous `make install'.
By default, ‘make install' will install the PCPMER files in '/usr/local/bin', '/usr/local/man', etc. You can specify an installation prefix other than '/usr/local' by giving ‘configure' the option '--prefix=PATH'.

You can specify separate installation prefixes for architecturespecific files and architecture-independent files. If you give 'configure' the option '--exec-prefix=PATH', the package will use PATH as the prefix for installing programs and libraries. Documentation and other data files will still use the regular prefix.

TO EXECUTE:

```
If you installed as root:
    $unixprompt > PCPMer
If you installed as non-root:
    Either include the PCPMerpack in your path or every time call
    the program with absoulte location.
    $unixprompt >/PCPMerpackDir/PCPMer
    If you cannot gain root permission, you still install PCPMer
    and include the PCPMerpack directory manually in the path or
    call PCPMer executable using absolute path i.e:
            $unixprompt > /PCPMerpackDir/PCPMer
```


6. FILES PRESENT IN THE DISTRIBUTION

FILE NAME

OCOPYRIGHT
OREADME
OINSTALL
PCPMer
PCPMer.pl
PCPmotifmaker.pm
PCPmotifminer.pm
errormsg.pm
install.sh
multialign.pm
vectorlib.pm
/examples
/doc

DESCRIPTION

Copyright information and terms of use
Provides brief summary of PCPMer
Installation instructions
PCPMer executable created when installation script is
executed
PCPMer front engine
Module containing routines for Motif detection
Module containing routines for Motif search
Module containing error messages
Installation script
Module containing routines to manipulate multiple
alignment
Parameters for amino acids (PCP descriptors)
Example directory (one example in ex0 directory)
Document directory

6 TERMS AND DEFINITIONS

PCP descriptors:

Five dimensional vectors that were adequate to represent distribution of natural amino acids in 237 dimensions.

Relative entropy:

A measure of dissimilarity of distribution. Here used for defining the significance of conservation.

G-cutoff:

An empirical parameter that defines number of insignificant positions in motif between two significant positions.

L-cutoff:

An empirical parameter that defines the minimum number of significant residue position in a motif.

Motif:

A set of consecutive or closely occurring residue position that are conserved in terms of their physical-chemical property in the evolution of the protein family.

Sequence string:

Residues in one letter code

Motif score:

Simple Lorentzian based score between a motif profile and window.

Effective score:

Score for each highest scoring motif window in a sequence using bayesian statistics that utilizes motif score distribution in the true positive and the database

Combined score:

Addition of effective scores for each motif for each sequence after applying score filter.

Score filter:

Filter applied to calculate combined score for each sequence. One can use raw scoring, or include those motifs that score above average scores in the database or above a cutoff.

7 INPUT/OUTPUT

7.1 INPUT FILES:

7.1.1 Multiple alignment file

Must be generated with CLUTALW. Currently the program accepts only the ALN format. Sequence of your interest must always on the top in the multiple alignment. Spaces in the sequence name are not allowed. Codes for amino acids other than the uppercase single letter code of 20 amino acids are not allowed. Gaps must be indicated by "-" and not by any other symbol.

```
CLUSTAL W (1.82) multiple sequence alignment
```

APE_H._sapiens
APE_M._musculus
APE_R._norvegicus
APE_B._taurus
APE_C._griseus
APE_D._melanogaster
EXO_C._elegans
APE_S._pombe
ARP_M._graminicola
APE_D._discoideum

ALYEDPPDHKTSP SGKPATLKICS------------------------------
VLYEDPPDQKTSPSGKSATLKICS---------------------------VLYEDPPDQKTSASGKSATLKICS-------------------------VLYEDPPDQKTSPSGKSATLKICS-------------------------------FLYEDAPDNKTSPGGKLATLKICS--------------------------TTVTLDKDAFALPADKEFNLKICS------------------------

Example of multiple alignment generated using APE sequences with CLUSTALW.

7.1.2Sequence Database file

Text file containing sequences in the FASTA format is allowed. Pre-processing of sequence data like removing redundant sequence above a percentage identity will result in higher speed. Use caution while using sequence database or more than 5000.

7.2 OUTPUT FILES:

Each output file will have unique extension. The output file type can be identified using this extension.

7.2.1 Log file (*.PCPlog)

The log file records the entire session when the program operates. It also records user input parameters, progress in the program and output. The log file summarizes PCPMer run.

```
PCPMer - Physical-chemical property based motif analyzer
                    Version 2.0
    COPYRIGHT (2003) Bin Zhou, Venkat Mathura & Werner Braun
        University of Texas Medical Branch, Galveston
                        LOG FILE
            Thu Jan 29 16:30:49 2004
```

```
Your selection is 4. This will :Create and search for motifs in a
database.
Reading multiple alignment file : APEALIGN.aln
Relative-entropy user defined = 1.25
G-value user defined = 2
L-value user defined = 4
Creating global profile file :EXAMPLE.PCPgprf
Creating motif Nlist file :EXAMPLE.PCPNlist
Creating motif profile file :EXAMPLE.PCPprf
Creating motif list file :EXAMPLE.PCPSlist
```

MOTIF DETAILS:
\#PARAM R_G_L:1.25:2:4:
\#MOTIF : 0: 36*42*71*72*103*125*177*181*184*216*253*274
\#MOTIF : 1: 20 LKICSWNVDGLRA 32
\#MOTIF : 2: 47 PDILCLQETK 56
\#MOTIF : 3: 84 EGYSGVGLLSR 94
\#MOTIF : 4: 110 DQEGRVI 116
\#MOTIF : 5: 129 YVPNA 133
\#MOTIF : 6: 139 RLEYRQRW 146
\#MOTIF : 7: 163 LVLCGDLNVAH 173
\#MOTIF : 8: 189 GFTPQER 195
\#MOTIF : 9: 205 VPLADSFR 212
\#MOTIF : 10: 222 YTFWTY 227
\#MOTIF : 11: 235 NVGWRLDYFLLSHSL 249
\#MOTIF : 12: 264 GSDHCPI 270

>><< Starting PCPMotifMiner
>><< Using the sequences from database : ASTRAL40v1.55.txt
Score filter option : 1
Number of top scorers : 30
Reading sequence database file : ASTRAL40v1.55.txt
Scoring true positive sequence
Scoring profile against sequence database
PCPMer - Physical-chemical property based motif analyzer
Version 2.0
COPYRIGHT University of Texas System

```
                            LOG FILE
Thu Jan 29 16:31:25 2004
```

```
Your selection is 2. This will :Search for motifs in a database..
Reading multiple alignment file : APEALIGN.aln >><< Starting
PCPMotifMiner
    >><< Using the sequences from database : ASTRAL40v1.55.txt
Score filter option : 1
Number of top scorers : 30
Reading sequence database file : ASTRAL40v1.55.txt
Scoring true positive sequence
Scoring profile against sequence database
```

Example of log file for running example. (*.PCPlog)

7.2.2 Profile files (*.PCPgprf, *.PCPprf)

Profile files contains the average vector values, standard deviation and relative entropy for each of the five PCP vectors. There are two types of profile file. The global profile file (*.PCPgprf) consists of profile for the entire position of the first sequence in the alignment. The motif profile file (*.PCPprf) contains profiles for those residues that are considered to be significant within each motif. The motif profile is used for scoring. Additional information like motif number, parameters used to generate the motifs, motif size is also provided in the motif profile file. Details of columns. Column 1: Position in the mutiple alignment file. Column 2: Total number of sequence in the multiple alignment. Column 3:Number of sequence without gaps. Column 4: Residue position in terms of sequence one. Column 5: Single letter code of correponding residue in sequence 1. Column 6-10: Average magnitude of E1-E5 vectors for the particular column. Column 11-15: Standard deviation of vectors E1-E5. Column 16-20: Relative entropy of E1-E5.

142	421	A	2.1316	0.9833	-3.5787	-5.6635	0.5030	5.7621
2.2974	2.4349		4.3591	2.2130	0.0698	0.0520	0.0185	0.0319
0.0459								
242	$42 \quad 2$	L	1.4334	1.6069	-4.0075	-6.5620	0.7728	6.8598
1.9251	1.8334		2.8840	2.1110	0.0305	0.0535	0.0416	0.0227
0.0337								
342	423	Y	2.2581	0.9920	-2.3657	-5.9903	0.7704	6.2562
3.3562	4.6703		3.7801	2.0724	0.1275	0.0195	0.0869	0.0100
0.0356								
442	$42 \quad 4$	E	4.3238	0.5675	-3.4094	-5.7059	2.0372	5.0647
4.5315	3.8774		4.2581	1.9599	0.0252	0.0487	0.0714	0.0646
0.1536								
542	425	D	4.0360	0.8095	-3.2601	-5.4695	1.4397	6.7050
3.4520	2.4164		4.5896	1.6056	0.0218	0.0349	0.0182	0.0552
0.0479								
642	426	P	3.9853	1.6002	-2.7805	-6.1360	1.4948	4.6721
3.2306	4.5917		3.6892	2.0349	0.0501	0.0436	0.0687	0.0116
0.0228								
742	427	P	4.4693	1.3749	-1.4142	-6.7572	1.7136	4.4467

4.3337	5.1467		2.6438	2.6900	0.1180	0.1136	0.1207	0.0772
0.1249								
842	428	D	5.0968	-0.3543	-3.2120	-5.2469	1.3351	5.6783
2.9303	2.0935		5.0441	1.7962	0.0252	0.0864	0.0201	0.1607
0.0483								
942	429	H	4.8131	-0.2342	-2.9610	-5.4953	0.3903	3.3371
3.8035	2.6546		4.4071	2.1908	0.0544	0.0204	0.0250	0.0416
0.0344								
$10 \quad 42$	4210	K	3.8608	0.1445	-3.2554	-6.2259	1.2728	5.9000
4.7665	3.1700		3.4804	1.4801	0.0163	0.0301	0.0081	0.0200
0.1032								
1142	4211	T	4.3427	1.4346	-3.3660	-5.9298	1.0972	3.7897
3.1090	3.9625		3.6214	2.2892	0.0792	0.0261	0.0738	0.0372
0.0344								
1242	4212	S	5.2948	2.2648	-3.4202	-5.5683	0.6996	3.7026
4.4693	2.5940		3.8969	1.9257	0.0785	0.0944	0.0431	0.0663
0.0674								
1342	4213	P	4.4071	2.0568	-1.8880	-5.7627	2.0983	4.4960
3.3113	5.4769		3.9562	2.2909	0.0757	0.0877	0.1269	0.0337
0.1198								
1442	4214	S	3.6709	1.3236	-2.4649	-5.9119	1.1296	6.4030
4.5854	3.6159		3.5406	2.2291	0.0141	0.0728	0.0250	0.0346
0.0201								
1542	4215	G	4.0401	2.8086	-2.8861	-4.8461	1.4245	6.7738
5.0773	2.9848		4.7681	1.6433	0.0379	0.1048	0.0065	0.0562
0.0895								
1642	4216	K	5.3148	-0.8701	-2.6754	-6.0158	0.9589	5.4151
5.4909	2.9130		3.6389	1.8109	0.0795	0.1186	0.0200	0.0557
0.1748								
1742	4217	P	5.2621	1.0791	-3.0819	-5.0524	0.9358	4.3459
5.4974	2.9284		4.3693	2.4657	0.0719	0.1023	0.0324	0.0291
0.0499								

Example of global profile (*.PCPgprf) file for running example. Column details are provided in motif profile file

\#PARAM R_G_L:1.25:2:4:								
AVG[6-10] STD[11-15] R[16-20]								
\#MOTIF NUM_SIGCOUNT:1:12:								
$20 \quad 42$	4220	L	-9.9080	-2.4175	-2.9473	1.4906	1.3928	3.9493
2.2939	4.3159		4.4517	1.7708	1.3314	0.9949	1.3882	1.0177
0.8044								
2142	4221	K	10.3465	-9.3774	-0.6542	-4.8372	-0.9833	1.2128
1.2620	1.6056		1.8376	2.1148	1.0070	2.3470	0.7038	1.1539
1.9612								
2242	$42 \quad 22$	I	-13.7147	1.2190	-2.4491	-2.8755	0.3873	3.0840
1.3489	2.7701		1.5973	2.8321	1.6113	0.7192	0.2814	0.6418
0.5728								
$24 \quad 42$	$42 \quad 24$	S	6.5840	5.9627	-0.3962	-1.1844	-3.4568	4.3137
1.1441	0.6862		1.7360	0.6662	0.6605	1.6833	0.9523	1.3122
1.4733								
$72 \quad 42$	4225	W	-12.7756	-3.8550	7.0216	0.8871	4.0103	2.6279
2.2727	4.1455		0.8396	1.3585	1.4848	1.9765	2.3691	1.4633
1.5575								
7342	4226	N	11.3446	1.0035	2.6455	2.0054	-0.7805	0.3241
0.4066	0.4639		0.2712	0.5025	1.4747	1.1389	2.5052	2.4972
2.7883								
7442	4227	V	-12.8005	3.1101	-3.8295	-2.9882	-3.4964	2.6127
1.3750	1.5247		1.3598	1.8304	1.6352	1.1389	0.8154	1.1275
1.2106								
7542	4228	D	10.3101	0.7308	0.3345	1.9640	0.2624	3.7533
1.9583	4.5586		1.1618	1.7077	1.1711	0.6504	1.2672	1.4840
1.5454								
$76 \quad 42$	4229	G	9.2890	13.5515	-0.4820	0.1304	0.7101	1.3330
4.5881	0.2387		0.9018	1.8544	1.3570	2.8161	1.2220	1.4156
0.8256								
$77 \quad 42$	4230	L	-12.3006	1.3533	-4.7719	-3.9590	1.6422	3.7944
2.4322	2.1142		1.0874	2.4966	1.5906	1.0391	0.8424	1.1321
0.6807								
7842	4231	R	7.9243	-8.5414	2.0479	-3.3916	-4.7265	1.4395
3.8697	1.6814		2.1794	2.2269	1.6267	1.6775	2.0496	0.8338
1.6327								
7942	4232	A	2.6729	4.5949	-7.0829	-0.8425	1.1711	5.3310
3.9800	5.1964		1.2295	2.5651	1.3792	0.6356	1.5147	0.9360
0.5189								
\#MOTIF NUM_SIGCOUNT:2:9:								
10342	4247	P	3.4587	5.8426	3.6896	-2.8414	3.9114	7.3243
3.5553	8.2736		1.3101	3.1952	0.8843	1.2275	1.6573	0.6072
1.0153								
10442	4248	D	12.6439	-1.3801	-0.2780	3.5361	2.3254	4.3079
1.2675	0.3047		0.9286	0.8505	1.3192	2.0187	1.0949	2.9772
1.3478								
10542	4249	I	-12.7783	3.0987	-3.4262	-3.0911	-2.5641	4.4391
2.2877	1.9295		0.8738	2.4396	1.4670	1.0391	0.4629	1.0403
0.8494								

Example of motif profile (*.PCPprf) file for running example. Column details are provided under \#COLUMNLABELS and \#MOTIF provides the motif number and length (significant members)

7.2.3 List files (*.PCPNlist, *PCPSlist)

The list files contains the motif list with parameters used to derive it. The list file is the summary of motifs identified in the protein family. It provides motif blocks with the starting and ending residue position number along with the string of residues that occur. Within the program there are two lists 1]Numbered list 2] Stringed list. Numbered list consists of motifs and the residues are indicated by a number rather than string. The output list file contains the stringed list.

```
#PARAM R_G_L:1.25:2:4:
20*21*22*24*25*26*27*28*29*30*31*32
47*48*49*50*51*52*53*54*56
84*85*86*87*88*89*92*94
110*112*113*114*116
129*131*132*133
139*142*143*146
163*164*165*166*167*168*169*170*171*172*173
189*190*193*194*195
205*207*209*211*212
222*224*225*227
235*237*238*239*240*241*242*244*246*249
264*265*266*267*268*269*270
36*42*71*72*103*125*177*181*184*216*253*274
```

Example of Numbered list (*.PCPNlist). The numbered list consists of significant residues of each motif. The first line \#PARAM records all the parameters used to derive motifs. Each line is a motif. The last line is the stray motifs, where these significant positions cannot be adjusted to any other motif in the list. Subroutine \&adjustmotif can reduce the number of residues in the stray motif list.

```
#PARAM R_G_L:1.25:2:4:
#MOTIF : 0: 36*42*71*72*103*125*177*181*184*216*253*274
#MOTIF : 1: 20 LKICSWNVDGLRA 32
#MOTIF : 2: 47 PDILCLQETK 56
#MOTIF : 3: 84 EGYSGVGLLSR 94
#MOTIF : 4: 110 DQEGRVI 116
#MOTIF : 5: }129\mathrm{ YVPNA 133
#MOTIF : 6: 139 RLEYRQRW 146
#MOTIF : 7: 163 LVLCGDLNVAH 173
#MOTIF : 8: 189 GFTPQER 195
#MOTIF : 9: }205\mathrm{ VPLADSFR 212
#MOTIF : 10: 222 YTFWTY 227
#MOTIF : 11: 235 NVGWRLDYFLLSHSL 249
#MOTIF : 12: 264 GSDHCPI 270
Example of Stringed list (*.PCPSlist). The stringed list consists of blocks of residues of each motif. \#MOTIF is the motif with numbers in ::. Motif number zero is stray motif. For each motif (except stray) starting and ending position as given in the multiple alignment is provided.
```


7.2.4 Score file (*.PCPscore)

This file contains score from all the highest scoring windows in a sequence for each motif sorted, with their effective score (bayesian score) and motif score. It also contains the information about the starting position of the window, motif number and sequence number (assigned as per the order in which sequences are read from the database).

```
#column 1-eff_score 2-score 3-start_res. 4-WinString 5-
Motifnum 6-Seqnumber 7-seq
    131.8132580 0.9077 19 LKICSWNVDGLRA 1 3053
>d1hd7a_ d.151.1.1 4.2.99.18 (A:) DNA repair endonuclease
Hap1 {Human (Homo sapiens)}
    130.2158736 0.8967 1 MKFVSFNINGLRA 1 3052
>d1ako__ d.151.1.1 3.1.11.2 (-) DNA-repair enzyme
exonuclease III {Escherichia coli}
    112.8334267 0.7770 204 AIGSTFNVNGVRA 1 1559
>d1f74a_ c.1.10.1 4.1.3.3 (A:) N-acetylneuraminate lyase
{Haemophilus influenzae}
```

Example of score file (*.PCPscore). Each entry is a highest scoring window for a single motif in a given sequence. Column \#1 is the effective score in bits. Column \#2 is lorentzian score for the motif window with the motif profile. \#3 is the starting position. \#4 is the string window \#5 is the motif profile used \#6 is the sequence index \#7 is the sequence name.

7.2.5 Result file (*.PCPres)

The result file contains the highest scoring sequences for all the motifs sorted using the filter options. The filter options include raw scoring, scoring motifs that score above mean of average scores and score motifs that score above a cutoff. The result file has the combined bit scores for the top scoring sequences in a descending order and sequence name.

```
2420.03 *>d1hd7a_*d.151.1.1*4.2.99.18*(A:) *DNA*repair*endonuclease*Hap1*{Human*(Homo*sapiens)}
    2354.21 *>d1ako__*d.151.1.1*3.1.11.2*(-)*DNA-repair*enzyme*exonuclease*III*{Escherichia*coli}
    1396.81 *>c1i9ya_*d.151.1.2*0.0.0.0*phosphatidylinositol*phosphate*{addedbyvenkat}
    1250.49 *>d2dnja_*d.151.1.1*0.0.0.0*(A:)*Deoxyribonuclease*I*{Cow*(Bos*taurus)}
    1231.10 *>d1ekma1*b.30.2.1*1.4.3.6* (A:237-672) *Copper*amine*oxidase,*domain*3*(catalytic)*{Yeast*(Hansenula*polymorpha)}
    1135.37
*>d1dp4a_*c.93.1.1*4.6.1.2*(A:)*Hormone*binding*domain*of*the*atrial*natriuretic*peptide*receptor*{Rat*(Rattus*norvegicus)}
```

Example of result file (*.PCPres). Combined effective scores are expressed in bits. Highest scoring sequences are listed.

7.3 Input Parameters

User defined:

Fixed Relative cut-off:

A high relative cutoff means significantly conserved position. When dealing with protein families that are not sufficiently diverged one can use higher relative entropy cutoff (range 0.75-2.5)

Variable Relative cut-off:

These parameters are defined by a range (minimum Relative entropy and maximum relative entropy) and a scan step to find the local PCP motifs. A high relative cutoff means significantly conserved position. When dealing with protein families that are not sufficiently diverged one can use higher relative entropy cutoff (range 0.75-2.5)

G - cutoff:

To define all conserved residues in a motif one can specify G-cutoff to be zero. Increased G-cutoff will result in longer motifs that may not be meaningful.

L - cutoff:

Motifs are defined by presence of more number of significant positions. Hence one should use higher L-cutoff. Lower L-cutoff will result in shorter and too many motifs.

Default parameters:

Standard deviation weight:

This is a multiplication factor added to the denominator for the lorentzian based motif scoring. This is set to 1.5 in the subroutine (motifminer::\&scoreprofilestring) as a variable \$sdwt.

Relative entropy cutoff:

Only those vectors that score above R-value will be scored for each motif. This values is set to 1.25 in the subroutine (motifminer::\&scoreprofilestring) as a variable \$entropy

Shift factor:

To prevent overflow due to standard deviation zero (for absolutely conserved positions or vectors) a shift factor is added to the denominator. This value is set to 0.001 in the subroutine (motifminer::\&scoreprofilestring) as a variable \$epsilon.

8 USING PCPMer

Example 1: To identify motifs in APE protein family and use it to data mine related proteins in the ASTRAL database:

To start the program type PCPMer on the unix prompt and follow the questions. For this example you will use $\mathrm{R}=1.25, \mathrm{G}=2, \mathrm{~L}=4$. A multiple alignment of 42 APE protein sequences are available in the file 'APEALIGN.ALN'. The sequence database is the ASTRAL 40 version 1.55 is provided in the text file 'ASTRAL40v1.55.txt'. In the original installation all the output from this run will be available under /example/ex0 directory. Please read README for more details.

Type on the unix prompt:
\$unixprompt > ./PCPMer

The run session is shown below (user entered options are shown in bold italics):

```
**************************************************************
                    Version 2.0
    (C) 2004 Bin Zhou, Venkatarajan S. Mathura
                & Prof.Werner Braun
            Sealy Center for Structural Biology, HBC&G
                UTMB, Galveston
                Sun May 25 14:19:57 2003
                    MAIN MENU
    1. Create Motifs
    2. Search for motifs and related sequence in a
        database
    3. Search for the highest scoring motifs in a set of
        sequence
    4. Create motifs and search database
    5. Create motifs and score set of sequences
    6. Create macro file of MOLMOL
    7. Help
    8. Exit
    >> Enter your selection : 4
    >> Please enter the multiple alignment file name : APEALIGN.aln
    >><< All output files can be identified using a prefix
    >> Enter a name for the project that will be used as prefix: EXAMPLE
    >><< To identify significantly conserved regions relative entropy is
calculated.
    >><< Use [2.0-3.0] for highly conserved sequences
    >><< or [0.75-2.0] for moderately conserved family
    >> Please enter Relative entropy cut-off : 1.25
```

```
>><< Motifs are defined by blocks of conserved positions
>><< Gap cutoff value limits stretches of non-conserved positions in a motif
>><< Use [0 or 1] for highly conserved sequence
>><< or [2-4] for moderately conserved family
>> Please enter Gap cut-off : 2
>><< Short motifs are not desirable
>><< L-cutoff limits motifs with less significant positions.
>><< Use [4-7] for highly conserved sequence
>><< and [2-4] for moderately conserved family.
>> Please enter minimum Length cut-off : 4
>><< Creating global profile file :EXAMPLE.PCPgprf
>><< Creating motif Nlist file :EXAMPLE.PCPNlist
>><< Creating motif profile file :EXAMPLE.PCPprf
>><< Creating motif list file :EXAMPLE.PCPSlist
```

```
>><< MOTIF DETAILS:
#PARAM R_G_L:1.25:2:4:
#MOTIF : 0: 8* 36*42*63*71*72*177*181*184*216*253*274
#MOTIF : 1: 20 LKICSWNVDGLRA 32
#MOTIF : 2: 47 PDILCLQETK 56
#MOTIF : 3: 83 KEGYSGVGLLSRQCP }9
#MOTIF : 4: 103 GIGDEEHDQEGRVIVAEFDSFVL 125
#MOTIF : 5: }129\mathrm{ YVPNA 133
#MOTIF : 6: 139 RLEYRQRW 146
#MOTIF : 7: 162 PLVLCGDLNVAH 173
#MOTIF : 8: 189 GFTPQERQGFGEL 201
#MOTIF : 9: 205 VPLADSFR 212
#MOTIF : 10: 222 YTFWTYM 228
#MOTIF : 11: 232 RSKNVGWRLDYFLLSHSL 249
#MOTIF : 12: 264 GSDHCPI 270
***************************************
    >> Enter the name of the database sequence file (.seq) : ASTRAL40v1.55.txt
    >> Enter combined score filter [0 - raw; 1 - >= mean; 2 - >= cutoff] : 1
    >> Number of effective top scoring sequences required : 30
    >> Reading sequence database file........
    >> Scoring true positive sequence
    Processing true positives for motif number :
    : 1 : : 2 : : 3 : : 4 : : 5 : : 6 :
    : 7 : : 8 : : 9 : :10 : : 11: : 12:
```

Program ended

List of output files:

```
EXAMPLE.PCPNlist [Numbered list file]
EXAMPLE.PCPSlist [Stringed list file]
EXAMPLE.PCPgprf [Global profile file]
EXAMPLE.PCPlog [Log file]
EXAMPLE.PCPprf [Profile file]
EXAMPLE.PCPres [Result file]
EXAMPLE.PCPscore [Score file]
EXAMPLE.PCPavg [Average scores for motifs and database file]
EXAMPLE.PCPexcl [Sequence numbers eliminated during scoring as they are
short]
```


9 PROGRAMER GUIDE(Version 1.0)*

* Software design document of version 2.0 will be provided soon.

9.1 MODULES AND ROUTINES

 PROGRAM PCPMerMODULE motifmaker.pm
makeprofile
fullprofile2motif
adjuststraymotif
motiflist2profile
evalmotiflist
autoevalparam
convert
mean
standard_dev
calcentropy
motifscorer.pm
readprofile
readfastatostrings
readmultipletostrings
parseprofile
scoreprofiledatabase
scoreprofilemultialign
finalscoreout
sortDindex
mean
standard_dev
scoreprofilestring
findmax
multialign.pm
readmalign
filtermalign
pairid
formatmalign
vectorlib.pm
errormsg.pm

9.2 FLOWCHART OF PROGRAM OPERATION

USER

9.3 MODULE AND SUBROUTINE DETAILS

PROGRAM
FUNCTION
INPUT
OUTPUT

VARIABLES
'PCPMer'
Front engine and simple user interface
Multiple alignment, Database file, RGL parameters.
FILE EXT. DESCRIPTION
.PCPlog Log file
.PCPgprf Global profile
.PCPlist Stringed list of motifs
.PCPprf Motif profile
.PCPscore Highest scoring windows of each motif
.PCPres Top x scoring sequences in the database

NAME	DESCRIPTION
@files	List of PCPM files
\$response_maln	Multiple alignment filename
@ m_aln_data	Multiple alignment data in array
\$response	Name for the project
\$user_R_value	User defined relative entropy cutoff
\$user_L_value	User defined L-value cutoff
\$user_G_value	User defined G-value cutoff
\$global_prf	Reference to global profile
\$motif_N_list	Reference to numbered motif list
\$motif_S_list	Reference to stringed motif list
\$motif_prf	Reference to motif profile
\$temR	Response to continue motifminer
\$response_dbase	Database file name
\$filter_opt	Filter option (0-raw, 1- average, 2- above cutoff)
\$cutoff_opt	User specified score cutoff
\$seqnamedb	Reference to sequence name
\$seqstringdb	Reference to sequence strings
\$TrueAvg	Average scores of all motifs in true positives
\$TrueStd	Standard deviation of all true positives
\$DataAvg	Averages scores of motifs in all database sequence.
\$FinalOut	Top x sequences ranked according to the filter.

VERSION HISTORY
Current
Release date
Written by
Details of modification
(date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

MODULE
FUNCTION
INPUT/OUTPUT
SUBROUTINE VERSION HISTORY
Current
Release date
Written by
Details of modification (date/author)

SUBROUTINE
FUNCTION
INPUT/OUTPUT

PSEUDOCODE VARIABLES

VERSION HISTORY
Current
Release date
Written by
Details of modification (date/author)
'errormsg.pm'
To detail error and warning messages when caught
Package 'errormsg' should be called to use any subroutine 'errmsg'

Version 1.0
01MAR03
Venkatarajan S. Mathura
‘errmsg'
Provides suitable error messages upon external call using a number.
Input is a three-digit number. First number indicates the type of error. 1XX errors in input 2XX errors in output 3XX overflow errors. 4XX unknown errors.

Uses a hash that stores error messages for a three number key.
'\%errormsg' hash that contains error messages

Version 1.0
01MAR03
Venkatarajan S. Mathura

MODULE
FUNCTION

INPUT/OUTPUT
VARIABLES

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)
'vectorlib.pm'
Contains amino acid parameters and supplies these params upon call.
Package 'vectorlib' should be called to use any subroutine
NAME A DESCRIPTION
\%vectorX E PCP descriptor X for all 20 AA. Single letter AA is KEY. $\mathrm{X}=1 . .5$
\%natfreq\{ \} $\quad \mathrm{E} \quad$ Provides magnitude of the vector in different
] bin for naturally occurring AA. Example PCP vector 2 magnitude in bin 1 is $\$$ natfreq\{2\}[1];
\%range $\}[] \quad \mathrm{E}$ Provides range of vector magnitude for binning. Example PCP vector 2 in the Ist bin is \$range $\{2\}[1]$ to range $\{2\}[0]$
@ natfreq E Natural frequency of amino acid occurrence. 20 in order.

Version 1.0
01MAR03
Venkatarajan S. Mathura

MODULE
FUNCTION
INPUT/OUTPUT SUBROUTINES
'multialign.pm'
To read and format multiple alignment in clustalw format
Package 'multialign' should be called to use any subroutine
NAME
A DESCRIPTION
\&readmalign E Reads in an array reference containing clustalw file
\&filtermalign E Filters multiple alignment based on \%id cutoff with respect to first sequence.
\&pairid I Calculates pairid between two strings excluding gaps
\&formatmali I Reformats multiple alignment after removing
gn redundant seq.

VERSION HISTORY

Current
Release date
Version 1.0
01MAR03
Venkatarajan S. Mathura

Written by
Details of modification
(date/author)
SUBROUTINE
FUNCTION
INPUT
OUTPUT
PSEUDOCODE

VARIABLES
'readmalign'
To read in a multiple alignment in clustalw format.
Reference to an array containing clustalw file
Reference to arrays containing 1 . sequence name 2 . sequence string
Read in the array reference for multiple alignment Check for clustalw format
Split data lines into sequence name and sequence string.
Append all sequence string of single sequence identified by name.
If there is 1 or 2 sequence only than call error
If the sequence string are of different lengths call error
If the sequence string contains non-standard amino acid codes than
raise error
Return array references for sequence name and string.
NAME DESCRIPTION
\$input Reference to input multiple alignment
$\$ \mathrm{i} \quad$ Increment counter for the sequence
@ dataline Each line of the multiple alignment
@seqname Array of sequence names
@ seqstring Array of sequence strings corresponding to sequenenames
\%seqdat Hash that has sequence name as key and sequence strings as value

VERSION HISTORY
Current
Release date
Written by
Details of modification (date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE
FUNCTION

INPUT
OUTPUT
PSEUDOCODE

VARIABLES

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)
'filtermalign'
To filter those sequences that have higher percentage identity above cutoff specified
Reference to an array containing clustalw, percentage id cutoff and internal subroutine calls
Array references to list of sequence names and sequence strings after reformat
Read the mutliple alignment
Split the data into sequence names and sequence strings Calculate pairwise identity scores excluding gaps for all sequences Remove sequences that exceed above the specified cutoff using first sequence as reference.
Reformat the sequence strings (like removing '-' if exist in all sequences)
Return references to new arrays containing sequence name and sequence strings.

NAME	DESCRIPTION
\$input	Reference to input multiple alignment
\$idcut	Identity cut off
\$seqname	Reference to array containing sequence names
\$seqstring	Reference to array containing sequence strings
\&readmalign	Subroutine that reads multiple alignment
\&pairid	Subroutine to calculate pairwise sequence id
\%remove	Flag those sequences that have sequence id greater than id cutoff
\$count1	Sequence counter
\$count2	Sequence counter
@seqname1	Array containing unflagged sequence name
@ seqstring1	Array containing unflagged sequence string
\$seqname2	Reference to array containing sequence name after reformat
\$seqstring2	Reference to array containing strings after reformat
\&formatmalign	Reformats strings (removes '-')
\&errmsg	Raise an error message

SUBROUTINE
FUNCTION
INPUT
OUTPUT
PSEUDOCODE

VARIABLES
'pairid'
Calculates pair-wise identity
Input two strings
\%id
??Read in two sequences
??Apply checks to make sure lengths of the string are equal
??Identify matching alphabets at different positions
??Divide identical positions/(number of non '-' positions)
NAME DESCRIPTION
\$string1 Variable containing first string
\$string2 Variable containing second string
\$count1 Position counter of each string
\$idcount Count identical residues in both string
\$strlengthminus Count number of gaps in any sequence

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE	'formatmalign'
FUNCTION	Excludes gaps that are common in all position and reformats multiple alignment
INPUT	Reference to array containing sequence names and strings
OUTPUT	Reformatted array reference containing sequence names and strings
PSEUDOCODE	??Read sequence strings
	??Run the position counter
	??For each position extract one letter from each sequence string
	??ff all the position in the strings are gaps than exclude from new sequence strings
VARIABLES	NAME DESCRIPTION
	\$inputname Array reference to sequence names
	\$inputstring Array reference to sequence strings
	\$count1 Sequence name counter
	\$count2 Sequence name counter
	\$i Original sequence position counter
	\$temp Temporary string (column from maln) holder
	\$gap Holds a gap string no_of_seq x "-"
	@ tempstr[A][B] Holds the residues at position B of seq A
	@ splitstr Array contains all positions of maln
	\$j New position incrementer
	\$k New position counter
	\$tempstr \quad Concatenates new position for a sequence
	@seqname2 Name of the sequence
	@ seqstring2 New strings after eliminating
VERSION HISTORY	
Current	Version 1.0
Release date	01MAR03
Written by	Venkatarajan S. Mathura
Details of modification (date/author)	

MODULE FUNCTION

INPUT/OUTPUT SUBROUTINES
'PCPmotifmaker'
To create motif from multiple alignment using empirical parameter
Package 'PCPmotifmaker' should be called to use any subroutine NAME A DESCRIPTION
\&makeprofile E Makes global profile with multiple alignment \&fullprofile2 E Uses empirical parameters RGL to make motif \&motiflist2pr E Uses a list to extract profile from global ofile profile
\&autoevalpar E Evaluates different param combination to am select optimal RGL
\&adjuststray E Adjusts stray motifs defined using RGL by motif redistributing residues to the defined motifs that are lesser than d specified
\&evalmotiflis I Evaluates whether the current motif list has
t
\&convert I Converts AA one letter code into vector and computes average, std. and rel. entropy
\&mean \quad I Calculates mean of the array
\&standard_de I Calculates standard deviation of the array
v
\&calcentropy I Calculates relative entropy
\&samp_mean I Calculates average using N-1
\&sam_standa I Calculates sample standard deviation
rd_dev

VERSION HISTORY

Current
Release date
Written by
Details of modification (date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE
FUNCTION
INPUT
OUTPUT
PSEUDOCODE

VARIABLES

VERSION HISTORY
Current
Release date
Written by
Details of modification
(date/author)
'makeprofile'
To make a global profile of a multiple
Array reference to sequence name and sequence strings
Reference to global profiles that has headers.
Read sequence string and name
Iterate each position of the multiple alignment and obtain AA in a column
Convert each of the AA code in to PCP descriptors or vectors 1-5
Calculate average, standard deviation and relative entropy
Calc. the number of gaps, position and residue index of the 1 res Print profile [GLOBAL]

NAME
\$inputname
\$inputstring
\$i
\$j
@temp
\$gap Number of gaps in a particular column corresponding to residue index of first sequence.
\$vector $\mathrm{X} \quad$ Magnitude of vector X averages correponding to column string. X varies from $1 . .5$
\$vectorsdX Standard deviation of vector X correponding to column string. X varies from $1 . .5$
\$rentropyX Relative entropy of vector X correponding to column string. X varies from 1 .. 5
\&convert Subroutine that converts string correponding to a column (no '-') in to average, std and rel. entropy
\$temps Formatted string that has the following format.
1] position 2]maxseq 3]nongaps 4] pos.no.of1stseq 5]resname 6] avg1 7]avg2 8]avg3 9]avg4 10]avg5 11-15]std 16-20]relativeentropy
@ profile Array of global profile

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE FUNCTION
INPUT
OUTPUT
PSEUDOCODE

VARIABLES
'fullprofile2motif
Convert global profile into motif list using RGL
Array reference to global profile, R cutoff, G cutoff, L cutoff
Array reference to Motif list
Read input global profile, R, G and L .
Mark all singificant datalines\{profile\} that have relative entropy greater than or equal to R
Calculate residue index difference [4th column] for two sequential singificant profiles
If the difference is less than G then concatenate to the motif. If the difference is greater than G then start a new motif.
Calculate the size of each motif (end res. position - start res position). If it is lesser than L
Then add to stray motif list

NAME	DESCRIPTION
\$inputarray	Array reference to global profile input
$\$ \mathrm{R}$	R cutoff
$\$ \mathrm{G}$	G cutoff
$\$ \mathrm{~L}$	L cutoff
@elements	Array containing elements of a profile
@signif	Array containing profile positions that are
significant	
$\$$ Amotifstring	Array index for significant position
@motif	String of profile index that consititutes a motif
\$k	Stores motif strings
@elementcount	Index for motifs
@motiflist	Number of significant position in the motif Array containing list of motifs
$\$$ straymotif	String of loose significantly conserved sites

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE FUNCTION INPUT
OUTPUT PSEUDOCODE

VARIABLES
'motiflist2profile'
Converts motif list into motif profile
Reference to array containing global profile and a list OUTPUT
Reference to array containing motif profile and an AA list.
Read array reference to the input profile and list
Extract residues in the list from global profile
For every motif include the details of motif number and residue

NAME
\$inputprofile
\$inputlist
@ storeA
@storeB
\$i
@temp
\$tempS
\$j
@tempt
\$tempX

DESCRIPTION
Array reference to the profile
Array reference to the input motif list
Array reference to the input motif list
Array to store profile
Index for motifs
Array containing elements of each motif
Temporary string that holds residue name corresponding to each element
Index for motif elements
Array containing individual element of a profile
String containing profile of each motif

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE FUNCTION
INPUT
OUTPUT
PSEUDOCODE

VARIABLES
'evalmotiflist'
Evaluates whether a motif list has length greater than 30 residues
Array reference to motif list.
Flag indicating Motif is not too long.
Read input list
Check the length of motif (last residue position - 1st residue position) is less than 30
NAME DESCRIPTION
\$inputlist Array reference to input list
\$i Index for motif
@temp Array containing elements of each motif
\$flag Flag to indicate whether length is greater than 30 residues (-1)

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura
SUBROUTINE
FUNCTION
INPUT
OUTPUT
PSEUDOCODE

VARIABLES
'autoevalparam'
To find optimal RGL combinations to define motifs automatically Array reference to motif profile
Optimal RGL parameters
Iterate through different combinations of RGL
For each combination evaluate whether all motifs are less than 30 residue

NAME	DESCRIPTION
\$inputprofile	Array reference to input profile
$@$ Rvalues	Array containing list of R values
$@$ Gvalues	Array containing list of G values
@Lvalues	Array containing list of L values
\$tempR	R value holder
\$tempG	G value holder
$\$$ tempL	L value holder
\$templist	Reference to motif list Subroutine to convert global profile into motif
\$temprofile2motif	Flag to indicate accept (0) or reject (-1) current RGL param
\&evalmotiflist	Subroutine to evaluate the fitness of the motif list

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE
FUNCTION
INPUT
OUTPUT
PSEUDOCODE

VARIABLES
'convert'
To convert an string of AA code into different vector average, std. dev. and relative entropy
String of amino acid and vector number
Average, standard deviation and relative entropy
Obtain string and parse it into single letter
Use vector library to convert it in to number
Calculate average, standard deviation, relative entropy for each vector
NAME
\$inputprofile
\$inputvec
\$temp
@ newarray
\%vectorX\{\}
\&mean
\&standard_dev
\&calcentropy

DESCRIPTION
Array reference to input profile
Vector number
String that can be evaluated to obtain the correct vector
Contains vector values
Vector values from module `vectorlib.pm' for $\mathrm{X}=1 . .5$
Subroutine to calculate mean
Subroutine to calculate standard deviation
Subroutine to calculate relative entropy

VERSION HISTORY

Current
Release date
Written by
Details of modification (date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE	'mean' 'samp_mean'
FUNCTION	To calculate average of an array of numbers (or $\mathrm{N}-1$ for samp_mean)
INPUT	Array reference containing numbers
OUTPUT	Average value
PSEUDOCODE	Obtain numbers in the array
	Add them and calculate average
VARIABLES	NAME DESCRIPTION
	\$arrayref Array reference to input number array
	\$result \quad Summed value of all array

VERSION HISTORY
Current
Release date
Written by
Details of modification
(date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE FUNCTION

INPUT
OUTPUT
PSEUDOCODE

VARIABLES
'standard_dev' 'samp_standard_dev'
To calculate standard deviation of an array of numbers (NOT SAMPLE)
Array reference containing numbers
Standard deviation
Obtain numbers in the array
Add them and calculate average
NAME
\$arrayref
\$result
\$deviation

DESCRIPTION
Array reference to input number array
Summed value of all array
Standard deviation

VERSION HISTORY

Current
Release date
Written by
Details of modification (date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE
 FUNCTION
 INPUT
 OUTPUT
 PSEUDOCODE

VARIABLES
'calcentropy'
To calculate relative entropy of an array of vector values
Array reference containing numbers
Relative entropy
Obtain numbers in the array and vector number
Calculate background value using natural frequency distribution of amino acid in a range
Calculate relative entropy using standard formula over the five bins

NAME
\$arrayref
\$vectorval
\$i
\$range $\{\mathrm{A}\}[]$
\$counteX
@obsf
\$j
\$rentropy

DESCRIPTION
Array reference to input number array Summed value of all array
Index for original array of numbers
Boundary of magnitude for vector A that defines bins. Value defined in 'vectorlib.pm'
Counts number of occurrence of AA vector values for bins $\mathrm{X}=1 . .5$
Array of observed frequency within five bins
Index for bins
Relative entropy

VERSION HISTORY

Current
Release date
Written by
Details of modification (date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

MODULE
FUNCTION
INPUT/OUTPUT SUBROUTINES
'PCPmotifminerr'
To score motifs against a database and select top hits using filter Package 'PCPmotifminerr' should be called to use any subroutine NAME A DESCRIPTION
\&readprofile E To read motif profile
\&readfastatos E To read fasta files and convert each sequence trings into a linear string
\&readmultipl E To read multiple alignment and convert into strings
etostrings \quad string
\&parseprofile E To parse individual profile that can be used for searching
scoreprofiled E To score profile against a defined database
atabase
\&scoreprofile E To score profile against TRUE sequences
multialign
\&finalscoreo E To score each sequence in the database using
ut a combined score
\&sortDindex I To sort highest score
\&mean I To calculate average
\&standard_de I To calculate standard deviation v
\&scoreprofile E To score profile against a string of AA string
\&findmax I To find the index of an array of number that is maximum

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTIN
FUNCTION
INPUT
OUTPUT
PSEUDOCODE
VARIABLES
'readprofile'
To read motif profile file
Array reference to profile data
Array reference to profilelengths and individual profile
Read motif profile
Split individual profile using motif separator

NAME
\$dataprof
@allsplt
\$profnum
\$maxprof
@ proflength
\$cce
\%profile $\{\mathrm{A}\}[\mathrm{B}] \quad$ Hash containing motif number A and profile index B

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura
SUBROUTINE
FUNCTION
INPUT
OUTPUT
PSEUDOCODE

VARIABLES
'readfastatostrings'
To read FASTA file
Array reference to fasta data
Array reference to sequence names and sequence strings Read FASTA file
Concatenate sequence strings and parse all sequence names

NAME
\$data
\$i
\$seq
@ sequen
@ name

DESCRIPTION
Array reference to fasta data
Sequence index
String containing the sequence
Array containing all sequence strings
Array containing all names

VERSION HISTORY
Current
Release date
Written by
Details of modification
(date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE
FUNCTION
INPUT
OUTPUT
PSEUDOCODE
VARIABLES
'readmultipletostrings'
To read multiple alignment file and convert in to array
Array reference to multiple alignment
Array reference to sequence names and sequence strings
Read multiple alignment file
Concatenate sequence strings and parse all sequence names

NAME
\$input
@checks
\%seqdat Hash containing sequence string as a value and sequence name as a key
Sequence index
Array containing all sequence strings
Array containing all names

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura
SUBROUTINE
FUNCTION
INPUT
OUTPUT
PSEUDOCODE

VARIABLES
'parseprofile'
To parse motif profile in to individual file
Array reference to motif profiles, Array reference to motif lenghts,
Motif number
Array reference to single motif profile
Read motif profiles, motif lenghts,motif number
Parse motif profiles and identify profiles that belong to a single motif required NAME
\$motifprofileref
\$motiflengthref
\$motif
@ motifdata

DESCRIPTION
Array reference to motif profiles
Array reference to motif lengths
Motif number
Array containing motif profile of motif \$motif

VERSION HISTORY

Current
Release date
Written by
Details of modification (date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE	'scoreprofiledatabase'
FUNCTION	To score a motif profile against sequences in a database
INPUT	Array reference to motif profile, Array reference to sequence data,
	Array reference to true positive average, Array reference to true
	positive standard deviation
OUTPUT	List of scores for highest scoring window for each profile for
	every sequence

VERSION HISTORY

Current
Release date
Written by
Details of modification (date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura
'scoreprofilemultialign'
To score motif profiles against sequences in the mutliple alignment
Array reference to motif profiles, Array reference to multiple alignment
Array reference to average and standard deviation of True positive
Read motif profiles and multiple alignment
Convert each multiple alignment into sequence strings
Score each profile against strings and record highest scores
For each motif calculate average and standard deviation.

NAME
\$dataarray1
\$dataarray2
\$TRUavg
\$TRUstd
\$temp5A
\$temp5B
\$temp6A
\$temp6B
\$motifn
\$temp7
\$seqn
\$temp8
\$tempstring
@motifRES1

DESCRIPTION

Array reference to motif profiles
Array reference to motif lengths
Array reference to true average of all motifs
Array reference to true std.dev of all motifs
Array reference to motif profile
Array reference to motif list
Array reference to sequence name
Array reference to sequence strings
Index for motifs
Array reference to single motif profile
Index for database sequence
Highest scoring window details for a string and profile \{SCORE POSITION STRING\} String formatter [\# \{SCORE POSITION STRING\} MOTIFNUM SEQNUM SEQNAME \#] \{ \} elements returned by '\&scoreprofilestring'
Array to store highest scoring window of all sequences for a motif

@ tempdat	Array of elements for each in motifRES1 @ scoredata
Array of highest scores for a particular motif	
\$average	Average score for a motif for a database
\$Effectivescore1	Combined score $(S x)$ for each motif
\$temp	String to hold effective score.
\&readprofile	Subroutine to read profile
\&readfastatostrings	Subroutine to read fasta file
\&parseprofile	Subroutine to parse profile
\&scoreprofilestring	Subroutine to score a profile against string \&mean
Subroutine to calculate average	

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE
FUNCTION
INPUT

OUTPUT
PSEUDOCODE

VARIABLES
'finalscoreout'
To output the highest combined scoring sequences using filters
Name of score file, highest number of x sequences required, Filter option, Cutoff (for Filter option 2), Average TP, Average DB. Array reference to top scoring sequences
Read motif profiles, motif lenghts,motif number
Parse motif profiles and identify profiles that belong to a single motif required
NAME DESCRIPTION
\$dataName Score data file name
@dataA Array containing data
@temp Elements of each row of data red
\$vv String containing sequence information
\$k
@ addscore Array containing combined score for each sequence
@ namedetails Array containing sequence details
\$newID
\$i
\&sortDindex
\$Option
\$ScoreCutoff
\$Truemean Array reference to average scores for motifs in true positive sequence
\$Datamean Array reference to average scores for motifs in the database

VERSION HISTORY

Current
Release date
Written by
Details of modification (date/author)

Version 1.0
01MAR03
Venkatarajan S. Mathura

SUBROUTINE FUNCTION

INPUT
OUTPUT PSEUDOCODE

VARIABLES
'sortDindex'
To output the index of an array after sorting the elements in numerical descending order
Array reference to an array containing scores.
Index of sorted scores in decreasing order
Read array that contains scores
Sort the array numerically

NAME
\$data
@ newIndex Index in the sorted order

DESCRIPTION
Array reference to an array containing scores

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)
Version 1.0
01MAR03
Venkatarajan S. Mathura
SUBROUTINE
FUNCTION

INPUT
OUTPUT
PSEUDOCODE

VARIABLES
'scoreprofilestring'
To score a motif profile against a sequence of string and report the highest scoring window.
Array reference to motif profile and the sequence string.
Highest score, window position, window string.
Read the profile and the string
Determine the length of the profile that should be used as the window
Obtain chunks of string from each scanning window and score profile against it
Determine the highest scoring window
NAME
\$profiledata
\$fastastring
\$entropy
\$sdwt
@temp
\$startvalue
\$finalvalue
\$length
\$seq
\$seqstring
\$s1
\$s1max
\$epsilon
$\$$
@val
\$profileshift
\$aa Residue at a particular position in one letter code
Fractional z score
Vector values defined in the 'vectorlib.pm'
$\mathrm{x}=1 . .5$
String containing score, position and string
information
Collects all \$temp
Array of scores
Maximum score
Index of maximum score
Subroutine to find the maximum score

VERSION HISTORY

Current
Release date
Written by
Details of modification
(date/author)

SUBROUTINE
FUNCTION
INPUT
OUTPUT
PSEUDOCODE
VARIABLES

Version 1.0
01MAR03
Venkatarajan S. Mathura
'findmax'
To the index and highest score of an array \{simple implementation\}
Array reference to an array containing scores
Highest score and its index
Read array that contains scores
Sort the array numerically
NAME
\$scoredata
\$max Maximum value
\$maxindex Index of maximum value

VERSION HISTORY

Current
Release date
Written by
Version 1.0
01MAR03
Venkatarajan S. Mathura

