

User and Developer's guide for

(Physical-chemical property based motif analyzer)
Version 2.0

(C) 2004 Bin Zhou, Venkatarajan S. Mathura & Prof. Werner Braun

UTMB, Galveston

 1

CONTENTS

1 INTRODUCTION .. 2
2 DISTRIBUTION... 4
3 VERSION AND HISTORY ... 5
4 COPYRIGHT AND LIABILITY ... 6
5 INSTALLATION AND REQUIREMENTS .. 8
6 TERMS AND DEFINITIONS.. 12
7 INPUT/OUTPUT.. 13

7.1 INPUT FILES:.. 13
7.1.1 Multiple alignment file.. 13
7.1.2 Sequence Database file ... 13

7.2 OUTPUT FILES:.. 13
7.2.1 Log file (*.PCPlog) ... 14
7.2.2 Profile files (*.PCPgprf, *.PCPprf) ... 15
7.2.3 List files (*.PCPNlist, *PCPSlist)... 19
7.2.4 Score file (*.PCPscore)... 20
7.2.5 Result file (*.PCPres).. 20

7.3 Input Parameters ... 21
8 USING PCPMer.. 22
9 PROGRAMER GUIDE(Version 1.0)* ... 24

9.1 MODULES AND ROUTINES ... 24
9.2 FLOWCHART OF PROGRAM OPERATION ... 25
9.3 MODULE AND SUBROUTINE DETAILS .. 26

 2

1 INTRODUCTION

PCPMer
(Physical-chemical property based motif analyzer)

Version 2.0
(C) 2004 The University of Texas System

Bin Zhou, Venkatarajan S. Mathura & Prof.Werner Braun
UTMB, Galveston

PCPMer is a software package that can be applied to identify important sequence regions

that are evolutionarily conserved in terms of their physical-chemical properties. A multi-

dimensional analysis of 237 relevant physical-chemical properties of amino acids

revealed that 5 dimensional representations are possible (PCP descriptors or vectors E1-

E5)[1]. This five-dimensional property space can be constructed such that the amino

acids are in a similar spatial distribution to that in the original high-dimensional property

space. Properties that correlate well with the five major components were

hydrophobicity, size, preferences for amino acids to occur in alpha-helices, number of

degenerate triplet codons and the frequency of occurrence of amino acid residues in beta-

strands. Distances computed for pairs of amino acids in the five-dimensional property

space are highly correlated with corresponding scores from similarity matrices derived

from sequence and 3D structure comparison. PCPMer calculates conservation of these

five vectors using a multiple alignment. It calculates relative entropy of distribution of

five vectors in equally spaced five bins between the protein family sequence of interest

and random occurrence of amino acids (natural frequency). The relative entropy (R)

cutoff is used to filter out insignificant regions in the protein sequence. In order to group

significantly conserved positions, empirical parameters like G and L-cutoff are used [2].

G-cutoff restricts the number of insignificant positions between two significant positions

 3

in a motif and L-cutoff excludes motifs smaller than the L significant members. A

bayesian based scoring scheme that uses distribution of scores in the true positive and the

database of interest helps in identifying related protein sequences that shares similar

motifs. Thus PCPMer can be used for both identifying motifs in a protein and data mine

for related members in sequence database. Currently the following functions are included

in PCPMer:

1. Create Motifs
2. Search for motifs and related sequence in a database
3. Search for the highest scoring motifs in a set of sequence
4. Create motifs and search database
5. Create motifs and score set of sequences
6. Create macro file of MOLMOL

REFERENCES

[1]
Venkatarajan, M.S., Braun W., 2001, "New quantitative descriptors for amino acids
based on multidimensional scaling of a large number of physical-chemical properties", J
Mol Modeling 7:445-453

[2]
Venkatarajan, M.S., Schein, C. H., Braun W., 2003, "Identifying physical chemical
property based sequence motifs in protein families and superfamilies: Application to
DNase I related endonuclease", Bioinformatics vol. 19:1381-1390, 2003.

[3]
Venkatarajan, M. S. 2002 "Automated generation of sequence motifs and 3D models for
proteins and their applications" Doctoral Disseration, University of Texas Medical
Branch, Galveston.

 4

2 DISTRIBUTION

PCPMer can be obtained freely for academic research purpose. This package is
not allowed to be modified or redistributed without the knowledge of the authors.
Separate commercial license is available. To obtain the software please send an email or
contact:

Prof. Werner Braun

Sealy Center for Structural Biology,
University of Texas Medical Branch,

301 University Blvd.
Galveston, TX 77555.

email: werner@newton.utmb.edu
phone: 409-7476810

fax: 409-7476850

 5

3 VERSION AND HISTORY

Version 1.0 (2003)

Version 2.0 (2004) parallel code, optimization of entropy values

& molmol display of motifs

and more details will be added those section in next releases.

 6

4 COPYRIGHT AND LIABILITY

COPYRIGHT:

 PCPMer is copyrighted to Dr. Bin Zhou, Dr. Venkatarajan S. Mathura and Werner

Braun at the University of Texas Medical Branch, Galveston a component of The

University of Texas System. This program is not covered under public license and hence

several restrictions apply.

?? The authors have exclusive rights to determine appropriate users and usage.

?? The package must be requested using the 'request form' and should be used only

by the person for the purpose it was requested.

?? Any intention of modifying the software must be informed to the authors in

written and must be approved by the authors.

?? Redistribution of this software in any form is prohibited.

?? This software (PCPMer) and its components may not be used for commercial

purpose unless written approval is granted in writing from the authors.

?? It is the intention of the authors to make this program available freely to academic

institution for research purpose only.

?? Appropriate citations of this program and related publications must be made in

cases where the program is used.

LIABILITY:

IN NO EVENT SHALL THE AUTHORS OR ANY INSTITUTIONS IN WHICH THEY

WORK (INCLUDING, BUT NOT LIMITED TO, UNIVERSITY OF TEXAS SYSTEM)

BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,

OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT

OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE

 7

AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED

HEREUNDER IS ON AN "AS IS" BASIS, AND THE AUTHOR HAS NO

OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,

ENHANCEMENTS, OR MODIFICATIONS.

 8

5 INSTALLATION AND REQUIREMENTS

Hardware requirement:

?? Atleast Pentium III processor or higher.
?? RAM atleast 128MB.

Software requirement:

?? Operating systems: LINUX, UNIX, IRIX.
?? PERL 5.0 or higher versions
?? C shell preferred

INSTRUCTIONS:

 To unzip and untar the distribution, type the following.
 $unixprompt> gunzip PCPMerpack2.0.tar.gz
 and then type
 $unixprompt> tar -xvf PCPMerpack2.0.tar

 This will create a directory PCPMerpack. Change current
 directory to PCPMerpack.

INSTALL:

Basically, to build and install PCPMer from sources, you enter three
commands:

 $./configure
 $ make
 $ make install

The `configure' shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a `Makefile' in each directory of the PCPMer
package. It also creates some `.h' files containing system-dependent
definitions. Finally, it creates a shell script `config.status' that
you can run in the future to recreate the current configuration, a
file `config.cache' that saves the results of its tests to speed up
reconfiguring, and a file `config.log' containing compiler output
(useful mainly for debugging `configure').

If you need to do unusual things to compile the PCPMer package, please
try to figure out how `configure' could check whether to do them, and
mail us diffs or instructions to so they can be considered for the next
release. If at some point `config.cache' contains results you don't
want to keep, you may remove or edit it.

The file `configure.in' is used to create `configure' by a program

 9

called `autoconf'. You only need `configure.in' if you want to change
it or regenerate `configure' using a newer version of `autoconf'.

 1. `cd' to the directory containing the PCPMER package source code
 type

 $./configure

 to configure PCPMER for your system. If you're using `csh' on an
 old version of System V, you might need to type

 % sh ./configure

 instead to prevent `csh' from trying to execute `configure'
itself.
 If you're building PCPMER on Windows using CYGWIN, type

 $ bash ./configure

 instead.

 Running `configure' takes awhile. While running, it prints some
 messages telling which features it is checking for.

 If `configure' reports an error or some bad result, check the
 files `config.log' for diagnostics.

 2. Check the `Makefile', `PCPMer', and `config.h' files generated by
 `configure'. Most settings should be guessed correctly by the
 `configure' program. You may, however, wish to edit the
 settings, or re-run `configure' with special options.

 3. Now type

 $ make

 to build PCPMER. Any modern MAKE flavors should do, but for
 incremental reconstruction, GNU MAKE is required on most
 systems.

 4. Check the `make' output for compiler errors and warnings.

 If you see any compiler errors or warnings, please see the
 sections `Warnings during build' and `Errors during build', below.

 5. Type

 $ make install

 This installs
 - the PCPMER executable `PCPMer' in some public place
 (usually in `/usr/local/bin/')

 6. You can remove the program binaries, libraries and object files

 10

 from the source directory by typing

 $ make clean

 7. You can remove PCPMER from your system by typing

 $ make uninstall

 This undoes all effects of a previous `make install'.

By default, `make install' will install the PCPMER files in
`/usr/local/bin', `/usr/local/man', etc. You can specify an
installation prefix other than `/usr/local' by giving `configure' the
option `--prefix=PATH'.

You can specify separate installation prefixes for architecture-
specific files and architecture-independent files. If you give
`configure' the option `--exec-prefix=PATH', the package will use PATH
as the prefix for installing programs and libraries. Documentation
and other data files will still use the regular prefix.

TO EXECUTE:

If you installed as root:
 $unixprompt > PCPMer

If you installed as non-root:
 Either include the PCPMerpack in your path or every time call
 the program with absoulte location.

 $unixprompt >/PCPMerpackDir/PCPMer

 If you cannot gain root permission, you still install PCPMer
 and include the PCPMerpack directory manually in the path or
 call PCPMer executable using absolute path i.e:
 $unixprompt > /PCPMerpackDir/PCPMer

 11

6. FILES PRESENT IN THE DISTRIBUTION

FILE NAME DESCRIPTION

0COPYRIGHT Copyright information and terms of use
0README Provides brief summary of PCPMer
0INSTALL Installation instructions
PCPMer PCPMer executable created when installation script is

executed
PCPMer.pl PCPMer front engine
PCPmotifmaker.pm Module containing routines for Motif detection
PCPmotifminer.pm Module containing routines for Motif search
errormsg.pm Module containing error messages
install.sh Installation script
multialign.pm Module containing routines to manipulate multiple

alignment
vectorlib.pm Parameters for amino acids (PCP descriptors)
/examples Example directory (one example in ex0 directory)
/doc Document directory

 12

6 TERMS AND DEFINITIONS

PCP descriptors:
 Five dimensional vectors that were adequate to represent distribution of natural
amino acids in 237 dimensions.

Relative entropy:
 A measure of dissimilarity of distribution. Here used for defining the significance
of conservation.

G-cutoff:
 An empirical parameter that defines number of insignificant positions in motif
between two significant positions.

L-cutoff:
 An empirical parameter that defines the minimum number of significant residue
position in a motif.

Motif:
 A set of consecutive or closely occurring residue position that are conserved in
terms of their physical-chemical property in the evolution of the protein family.

Sequence string:
 Residues in one letter code

Motif score:
 Simple Lorentzian based score between a motif profile and window.

Effective score:
 Score for each highest scoring motif window in a sequence using bayesian
statistics that utilizes motif score distribution in the true positive and the database

Combined score:
 Addition of effective scores for each motif for each sequence after applying score
filter.

Score filter:
 Filter applied to calculate combined score for each sequence. One can use raw
scoring, or include those motifs that score above average scores in the database or above
a cutoff.

 13

7 INPUT/OUTPUT

7.1 INPUT FILES:

7.1.1 Multiple alignment file

 Must be generated with CLUTALW. Currently the program accepts only the ALN
format. Sequence of your interest must always on the top in the multiple alignment.
Spaces in the sequence name are not allowed. Codes for amino acids other than the
uppercase single letter code of 20 amino acids are not allowed. Gaps must be indicated by
"-" and not by any other symbol.

CLUSTAL W (1.82) multiple sequence alignment

APE_H._sapiens ALYEDPPDHKTSPSGKPATLKICS-------------------
APE_M._musculus VLYEDPPDQKTSPSGKSATLKICS-------------------
APE_R._norvegicus VLYEDPPDQKTSASGKSATLKICS-------------------
APE_B._taurus VLYEDPPDQKTSPSGKSATLKICS-------------------
APE_C._griseus FLYEDAPDNKTSPGGKLATLKICS-------------------
APE_D._melanogaster TTVTLDKDAFALPADKEFNLKICS-------------------
EXO_C._elegans --------------NNQKSWKFVC-------------------
APE_S._pombe -------------------MRILS-------------------
ARP_M._graminicola -------------------MRLTT-------------------
APE_D._discoideum ASVSIAIDNLDEPKVEENQMKIIS-------------------

Example of multiple alignment generated using APE sequences with CLUSTALW.

7.1.2 Sequence Database file

 Text file containing sequences in the FASTA format is allowed. Pre-processing of
sequence data like removing redundant sequence above a percentage identity will result
in higher speed. Use caution while using sequence database or more than 5000.

7.2 OUTPUT FILES:

 Each output file will have unique extension. The output file type can be identified
using this extension.

 14

7.2.1 Log file (*.PCPlog)

 The log file records the entire session when the program operates. It also records
user input parameters, progress in the program and output. The log file summarizes
PCPMer run.

PCPMer - Physical-chemical property based motif analyzer
 Version 2.0
 COPYRIGHT (2003) Bin Zhou, Venkat Mathura & Werner Braun
 University of Texas Medical Branch, Galveston
 LOG FILE
 Thu Jan 29 16:30:49 2004

Your selection is 4. This will :Create and search for motifs in a
database.
Reading multiple alignment file : APEALIGN.aln
Relative-entropy user defined = 1.25
G-value user defined = 2
L-value user defined = 4
Creating global profile file :EXAMPLE.PCPgprf
Creating motif Nlist file :EXAMPLE.PCPNlist
Creating motif profile file :EXAMPLE.PCPprf
Creating motif list file :EXAMPLE.PCPSlist

MOTIF DETAILS:

#PARAM R_G_L:1.25:2:4:
#MOTIF : 0: 36*42*71*72*103*125*177*181*184*216*253*274
#MOTIF : 1: 20 LKICSWNVDGLRA 32
#MOTIF : 2: 47 PDILCLQETK 56
#MOTIF : 3: 84 EGYSGVGLLSR 94
#MOTIF : 4: 110 DQEGRVI 116
#MOTIF : 5: 129 YVPNA 133
#MOTIF : 6: 139 RLEYRQRW 146
#MOTIF : 7: 163 LVLCGDLNVAH 173
#MOTIF : 8: 189 GFTPQER 195
#MOTIF : 9: 205 VPLADSFR 212
#MOTIF : 10: 222 YTFWTY 227
#MOTIF : 11: 235 NVGWRLDYFLLSHSL 249
#MOTIF : 12: 264 GSDHCPI 270

 >><< Starting PCPMotifMiner
 >><< Using the sequences from database : ASTRAL40v1.55.txt
Score filter option : 1
Number of top scorers : 30
Reading sequence database file : ASTRAL40v1.55.txt
Scoring true positive sequence
Scoring profile against sequence database
PCPMer - Physical-chemical property based motif analyzer
 Version 2.0
 COPYRIGHT University of Texas System

 15

 LOG FILE
 Thu Jan 29 16:31:25 2004

Your selection is 2. This will :Search for motifs in a database..
Reading multiple alignment file : APEALIGN.aln >><< Starting
PCPMotifMiner
 >><< Using the sequences from database : ASTRAL40v1.55.txt
Score filter option : 1
Number of top scorers : 30
Reading sequence database file : ASTRAL40v1.55.txt
Scoring true positive sequence
Scoring profile against sequence database

Example of log file for running example. (*.PCPlog)

7.2.2 Profile files (*.PCPgprf, *.PCPprf)

 Profile files contains the average vector values, standard deviation and relative
entropy for each of the five PCP vectors. There are two types of profile file. The global
profile file (*.PCPgprf) consists of profile for the entire position of the first sequence in
the alignment. The motif profile file (*.PCPprf) contains profiles for those residues that
are considered to be significant within each motif. The motif profile is used for scoring.
Additional information like motif number, parameters used to generate the motifs, motif
size is also provided in the motif profile file. Details of columns. Column 1: Position in
the mutiple alignment file. Column 2: Total number of sequence in the multiple
alignment. Column 3:Number of sequence without gaps. Column 4: Residue position in
terms of sequence one. Column 5: Single letter code of correponding residue in sequence
1. Column 6-10: Average magnitude of E1-E5 vectors for the particular column. Column
11-15: Standard deviation of vectors E1-E5. Column 16-20: Relative entropy of E1-E5.

 1 42 42 1 A 2.1316 0.9833 -3.5787 -5.6635 0.5030 5.7621
2.2974 2.4349 4.3591 2.2130 0.0698 0.0520 0.0185 0.0319
0.0459
 2 42 42 2 L 1.4334 1.6069 -4.0075 -6.5620 0.7728 6.8598
1.9251 1.8334 2.8840 2.1110 0.0305 0.0535 0.0416 0.0227
0.0337
 3 42 42 3 Y 2.2581 0.9920 -2.3657 -5.9903 0.7704 6.2562
3.3562 4.6703 3.7801 2.0724 0.1275 0.0195 0.0869 0.0100
0.0356
 4 42 42 4 E 4.3238 0.5675 -3.4094 -5.7059 2.0372 5.0647
4.5315 3.8774 4.2581 1.9599 0.0252 0.0487 0.0714 0.0646
0.1536
 5 42 42 5 D 4.0360 0.8095 -3.2601 -5.4695 1.4397 6.7050
3.4520 2.4164 4.5896 1.6056 0.0218 0.0349 0.0182 0.0552
0.0479
 6 42 42 6 P 3.9853 1.6002 -2.7805 -6.1360 1.4948 4.6721
3.2306 4.5917 3.6892 2.0349 0.0501 0.0436 0.0687 0.0116
0.0228
 7 42 42 7 P 4.4693 1.3749 -1.4142 -6.7572 1.7136 4.4467
4.3337 5.1467 2.6438 2.6900 0.1180 0.1136 0.1207 0.0772

 16

4.3337 5.1467 2.6438 2.6900 0.1180 0.1136 0.1207 0.0772
0.1249
 8 42 42 8 D 5.0968 -0.3543 -3.2120 -5.2469 1.3351 5.6783
2.9303 2.0935 5.0441 1.7962 0.0252 0.0864 0.0201 0.1607
0.0483
 9 42 42 9 H 4.8131 -0.2342 -2.9610 -5.4953 0.3903 3.3371
3.8035 2.6546 4.4071 2.1908 0.0544 0.0204 0.0250 0.0416
0.0344
 10 42 42 10 K 3.8608 0.1445 -3.2554 -6.2259 1.2728 5.9000
4.7665 3.1700 3.4804 1.4801 0.0163 0.0301 0.0081 0.0200
0.1032
 11 42 42 11 T 4.3427 1.4346 -3.3660 -5.9298 1.0972 3.7897
3.1090 3.9625 3.6214 2.2892 0.0792 0.0261 0.0738 0.0372
0.0344
 12 42 42 12 S 5.2948 2.2648 -3.4202 -5.5683 0.6996 3.7026
4.4693 2.5940 3.8969 1.9257 0.0785 0.0944 0.0431 0.0663
0.0674
 13 42 42 13 P 4.4071 2.0568 -1.8880 -5.7627 2.0983 4.4960
3.3113 5.4769 3.9562 2.2909 0.0757 0.0877 0.1269 0.0337
0.1198
 14 42 42 14 S 3.6709 1.3236 -2.4649 -5.9119 1.1296 6.4030
4.5854 3.6159 3.5406 2.2291 0.0141 0.0728 0.0250 0.0346
0.0201
 15 42 42 15 G 4.0401 2.8086 -2.8861 -4.8461 1.4245 6.7738
5.0773 2.9848 4.7681 1.6433 0.0379 0.1048 0.0065 0.0562
0.0895
 16 42 42 16 K 5.3148 -0.8701 -2.6754 -6.0158 0.9589 5.4151
5.4909 2.9130 3.6389 1.8109 0.0795 0.1186 0.0200 0.0557
0.1748
 17 42 42 17 P 5.2621 1.0791 -3.0819 -5.0524 0.9358 4.3459
5.4974 2.9284 4.3693 2.4657 0.0719 0.1023 0.0324 0.0291
0.0499

Example of global profile (*.PCPgprf) file for running example. Column details are
provided in motif profile file

 17

#PARAM R_G_L:1.25:2:4:
#COLUMNLABELS POS[1] TOTSEQ[2] SEQNOGAP[3] RESINSEQ1[4] RESCODE[5]
AVG[6-10] STD[11-15] R[16-20]
#MOTIF NUM_SIGCOUNT:1:12:
 20 42 42 20 L -9.9080 -2.4175 -2.9473 1.4906 1.3928 3.9493
2.2939 4.3159 4.4517 1.7708 1.3314 0.9949 1.3882 1.0177
0.8044
 21 42 42 21 K 10.3465 -9.3774 -0.6542 -4.8372 -0.9833 1.2128
1.2620 1.6056 1.8376 2.1148 1.0070 2.3470 0.7038 1.1539
1.9612
 22 42 42 22 I -13.7147 1.2190 -2.4491 -2.8755 0.3873 3.0840
1.3489 2.7701 1.5973 2.8321 1.6113 0.7192 0.2814 0.6418
0.5728
 24 42 42 24 S 6.5840 5.9627 -0.3962 -1.1844 -3.4568 4.3137
1.1441 0.6862 1.7360 0.6662 0.6605 1.6833 0.9523 1.3122
1.4733
 72 42 42 25 W -12.7756 -3.8550 7.0216 0.8871 4.0103 2.6279
2.2727 4.1455 0.8396 1.3585 1.4848 1.9765 2.3691 1.4633
1.5575
 73 42 42 26 N 11.3446 1.0035 2.6455 2.0054 -0.7805 0.3241
0.4066 0.4639 0.2712 0.5025 1.4747 1.1389 2.5052 2.4972
2.7883
 74 42 42 27 V -12.8005 3.1101 -3.8295 -2.9882 -3.4964 2.6127
1.3750 1.5247 1.3598 1.8304 1.6352 1.1389 0.8154 1.1275
1.2106
 75 42 42 28 D 10.3101 0.7308 0.3345 1.9640 0.2624 3.7533
1.9583 4.5586 1.1618 1.7077 1.1711 0.6504 1.2672 1.4840
1.5454
 76 42 42 29 G 9.2890 13.5515 -0.4820 0.1304 0.7101 1.3330
4.5881 0.2387 0.9018 1.8544 1.3570 2.8161 1.2220 1.4156
0.8256
 77 42 42 30 L -12.3006 1.3533 -4.7719 -3.9590 1.6422 3.7944
2.4322 2.1142 1.0874 2.4966 1.5906 1.0391 0.8424 1.1321
0.6807
 78 42 42 31 R 7.9243 -8.5414 2.0479 -3.3916 -4.7265 1.4395
3.8697 1.6814 2.1794 2.2269 1.6267 1.6775 2.0496 0.8338
1.6327
 79 42 42 32 A 2.6729 4.5949 -7.0829 -0.8425 1.1711 5.3310
3.9800 5.1964 1.2295 2.5651 1.3792 0.6356 1.5147 0.9360
0.5189
#MOTIF NUM_SIGCOUNT:2:9:
103 42 42 47 P 3.4587 5.8426 3.6896 -2.8414 3.9114 7.3243
3.5553 8.2736 1.3101 3.1952 0.8843 1.2275 1.6573 0.6072
1.0153
104 42 42 48 D 12.6439 -1.3801 -0.2780 3.5361 2.3254 4.3079
1.2675 0.3047 0.9286 0.8505 1.3192 2.0187 1.0949 2.9772
1.3478
105 42 42 49 I -12.7783 3.0987 -3.4262 -3.0911 -2.5641 4.4391
2.2877 1.9295 0.8738 2.4396 1.4670 1.0391 0.4629 1.0403
0.8494

 18

Example of motif profile (*.PCPprf) file for running example. Column details are
provided under #COLUMNLABELS and #MOTIF provides the motif number and

length (significant members)

 19

7.2.3 List files (*.PCPNlist, *PCPSlist)

 The list files contains the motif list with parameters used to derive it. The list file
is the summary of motifs identified in the protein family. It provides motif blocks with
the starting and ending residue position number along with the string of residues that
occur. Within the program there are two lists 1]Numbered list 2] Stringed list.
Numbered list consists of motifs and the residues are indicated by a number rather than
string. The output list file contains the stringed list.

#PARAM R_G_L:1.25:2:4:
20*21*22*24*25*26*27*28*29*30*31*32
47*48*49*50*51*52*53*54*56
84*85*86*87*88*89*92*94
110*112*113*114*116
129*131*132*133
139*142*143*146
163*164*165*166*167*168*169*170*171*172*173
189*190*193*194*195
205*207*209*211*212
222*224*225*227
235*237*238*239*240*241*242*244*246*249
264*265*266*267*268*269*270
36*42*71*72*103*125*177*181*184*216*253*274
Example of Numbered list (*.PCPNlist). The numbered list consists of
significant residues of each motif. The first line #PARAM records all the
parameters used to derive motifs. Each line is a motif. The last line is the
stray motifs, where these significant positions cannot be adjusted to any
other motif in the list. Subroutine &adjustmotif can reduce the number of
residues in the stray motif list.

#PARAM R_G_L:1.25:2:4:
#MOTIF : 0: 36*42*71*72*103*125*177*181*184*216*253*274
#MOTIF : 1: 20 LKICSWNVDGLRA 32
#MOTIF : 2: 47 PDILCLQETK 56
#MOTIF : 3: 84 EGYSGVGLLSR 94
#MOTIF : 4: 110 DQEGRVI 116
#MOTIF : 5: 129 YVPNA 133
#MOTIF : 6: 139 RLEYRQRW 146
#MOTIF : 7: 163 LVLCGDLNVAH 173
#MOTIF : 8: 189 GFTPQER 195
#MOTIF : 9: 205 VPLADSFR 212
#MOTIF : 10: 222 YTFWTY 227
#MOTIF : 11: 235 NVGWRLDYFLLSHSL 249
#MOTIF : 12: 264 GSDHCPI 270
Example of Stringed list (*.PCPSlist). The stringed list consists of blocks
of residues of each motif. #MOTIF is the motif with numbers in ::. Motif
number zero is stray motif. For each motif (except stray) starting and
ending position as given in the multiple alignment is provided.

 20

7.2.4 Score file (*.PCPscore)

 This file contains score from all the highest scoring windows in a sequence for
each motif sorted, with their effective score (bayesian score) and motif score. It also
contains the information about the starting position of the window, motif number and
sequence number (assigned as per the order in which sequences are read from the
database).

#column 1-eff_score 2-score 3-start_res. 4-WinString 5-
Motifnum 6-Seqnumber 7-seq
 131.8132580 0.9077 19 LKICSWNVDGLRA 1 3053
>d1hd7a_ d.151.1.1 4.2.99.18 (A:) DNA repair endonuclease
Hap1 {Human (Homo sapiens)}
 130.2158736 0.8967 1 MKFVSFNINGLRA 1 3052
>d1ako__ d.151.1.1 3.1.11.2 (-) DNA-repair enzyme
exonuclease III {Escherichia coli}
 112.8334267 0.7770 204 AIGSTFNVNGVRA 1 1559
>d1f74a_ c.1.10.1 4.1.3.3 (A:) N-acetylneuraminate lyase
{Haemophilus influenzae}

Example of score file (*.PCPscore). Each entry is a highest scoring
window for a single motif in a given sequence. Column #1 is the
effective score in bits. Column #2 is lorentzian score for the motif
window with the motif profile. #3 is the starting position. #4 is the string
window #5 is the motif profile used #6 is the sequence index #7 is the
sequence name.

7.2.5 Result file (*.PCPres)

 The result file contains the highest scoring sequences for all the motifs sorted
using the filter options. The filter options include raw scoring, scoring motifs that score
above mean of average scores and score motifs that score above a cutoff. The result file
has the combined bit scores for the top scoring sequences in a descending order and
sequence name.

2420.03 *>d1hd7a_*d.151.1.1*4.2.99.18*(A:)*DNA*repair*endonuclease*Hap1*{Human*(Homo*sapiens)}
 2354.21 *>d1ako__*d.151.1.1*3.1.11.2*(-)*DNA-repair*enzyme*exonuclease*III*{Escherichia*coli}
 1396.81 *>c1i9ya_*d.151.1.2*0.0.0.0*phosphatidylinositol*phosphate*{addedbyvenkat}
 1250.49 *>d2dnja_*d.151.1.1*0.0.0.0*(A:)*Deoxyribonuclease*I*{Cow*(Bos*taurus)}
 1231.10 *>d1ekma1*b.30.2.1*1.4.3.6*(A:237-672)*Copper*amine*oxidase,*domain*3*(catalytic)*{Yeast*(Hansenula*polymorpha)}
 1135.37
*>d1dp4a_*c.93.1.1*4.6.1.2*(A:)*Hormone*binding*domain*of*the*atrial*natriuretic*peptide*receptor*{Rat*(Rattus*norvegicus)}

Example of result file (*.PCPres). Combined effective scores are expressed in bits. Highest scoring
sequences are listed.

 21

7.3 Input Parameters

User defined:

Fixed Relative cut-off:

A high relative cutoff means significantly conserved position. When dealing with protein
families that are not sufficiently diverged one can use higher relative entropy cutoff
(range 0.75-2.5)

Variable Relative cut-off:

These parameters are defined by a range (minimum Relative entropy and maximum
relative entropy) and a scan step to find the local PCP motifs. A high relative cutoff
means significantly conserved position. When dealing with protein families that are not
sufficiently diverged one can use higher relative entropy cutoff (range 0.75-2.5)

G - cutoff:
To define all conserved residues in a motif one can specify G-cutoff to be zero. Increased
G-cutoff will result in longer motifs that may not be meaningful.

L - cutoff:
Motifs are defined by presence of more number of significant positions. Hence one
should use higher L-cutoff. Lower L-cutoff will result in shorter and too many motifs.

Default parameters:

Standard deviation weight:
This is a multiplication factor added to the denominator for the lorentzian based motif
scoring. This is set to 1.5 in the subroutine (motifminer::&scoreprofilestring)
as a variable $sdwt.

Relative entropy cutoff:
Only those vectors that score above R-value will be scored for each motif. This values is
set to 1.25 in the subroutine (motifminer::&scoreprofilestring) as a variable $entropy

Shift factor:
To prevent overflow due to standard deviation zero (for absolutely conserved positions or
vectors) a shift factor is added to the denominator. This value is set to 0.001 in the
subroutine (motifminer::&scoreprofilestring) as a variable $epsilon.

 22

8 USING PCPMer

Example 1: To identify motifs in APE protein family and use it to data mine
related proteins in the ASTRAL database:

To start the program type PCPMer on the unix prompt and follow the questions.
For this example you will use R=1.25, G=2, L=4. A multiple alignment of 42 APE
protein sequences are available in the file 'APEALIGN.ALN'. The sequence database
is the ASTRAL 40 version 1.55 is provided in the text file 'ASTRAL40v1.55.txt'. In
the original installation all the output from this run will be available under
/example/ex0 directory. Please read README for more details.

Type on the unix prompt:

 $unixprompt > ./PCPMer

The run session is shown below (user entered options are shown in bold italics):

 |***|
 | PCPMer - Physical-chemical property based motif analyzer |
 | Version 2.0 |
 | (C) 2004 Bin Zhou, Venkatarajan S. Mathura |
 | & Prof.Werner Braun |
 | Sealy Center for Structural Biology, HBC&G |
 | UTMB, Galveston |
 | |
 | |
 | Sun May 25 14:19:57 2003 |
 | |
 | |
 | MAIN MENU |
 | 1. Create Motifs |
 | 2. Search for motifs and related sequence in a |
 | database |
 | 3. Search for the highest scoring motifs in a set of |
 | sequence |
 | 4. Create motifs and search database |
 | 5. Create motifs and score set of sequences |
 | 6. Create macro file of MOLMOL |
 | 7. Help |
 | 8. Exit |
 |___|

 >> Enter your selection : 4
 >> Please enter the multiple alignment file name : APEALIGN.aln
 >><< All output files can be identified using a prefix
 >> Enter a name for the project that will be used as prefix: EXAMPLE
 >><< To identify significantly conserved regions relative entropy is
calculated.
 >><< Use [2.0-3.0] for highly conserved sequences
 >><< or [0.75-2.0] for moderately conserved family
 >> Please enter Relative entropy cut-off : 1.25

 23

 >><< Motifs are defined by blocks of conserved positions
 >><< Gap cutoff value limits stretches of non-conserved positions in a motif
 >><< Use [0 or 1] for highly conserved sequence
 >><< or [2-4] for moderately conserved family
 >> Please enter Gap cut-off : 2
 >><< Short motifs are not desirable
 >><< L-cutoff limits motifs with less significant positions.
 >><< Use [4-7] for highly conserved sequence
 >><< and [2-4] for moderately conserved family.
 >> Please enter minimum Length cut-off : 4
 >><< Creating global profile file :EXAMPLE.PCPgprf
 >><< Creating motif Nlist file :EXAMPLE.PCPNlist
 >><< Creating motif profile file :EXAMPLE.PCPprf
 >><< Creating motif list file :EXAMPLE.PCPSlist

 >><< *************************************
 >><< MOTIF DETAILS:

#PARAM R_G_L:1.25:2:4:
#MOTIF : 0: 8*36*42*63*71*72*177*181*184*216*253*274
#MOTIF : 1: 20 LKICSWNVDGLRA 32
#MOTIF : 2: 47 PDILCLQETK 56
#MOTIF : 3: 83 KEGYSGVGLLSRQCP 97
#MOTIF : 4: 103 GIGDEEHDQEGRVIVAEFDSFVL 125
#MOTIF : 5: 129 YVPNA 133
#MOTIF : 6: 139 RLEYRQRW 146
#MOTIF : 7: 162 PLVLCGDLNVAH 173
#MOTIF : 8: 189 GFTPQERQGFGEL 201
#MOTIF : 9: 205 VPLADSFR 212
#MOTIF : 10: 222 YTFWTYM 228
#MOTIF : 11: 232 RSKNVGWRLDYFLLSHSL 249
#MOTIF : 12: 264 GSDHCPI 270

 >> Enter the name of the database sequence file (.seq) : ASTRAL40v1.55.txt
 >> Enter combined score filter [0 - raw; 1 - >= mean; 2 - >= cutoff] : 1
 >> Number of effective top scoring sequences required : 30
 >> Reading sequence database file........
 >> Scoring true positive sequence
 Processing true positives for motif number :
 : 1 : : 2 : : 3 : : 4 : : 5 : : 6 :
 : 7 : : 8 : : 9 : :10 : : 11: : 12:

Program ended

List of output files:

EXAMPLE.PCPNlist [Numbered list file]
EXAMPLE.PCPSlist [Stringed list file]
EXAMPLE.PCPgprf [Global profile file]
EXAMPLE.PCPlog [Log file]
EXAMPLE.PCPprf [Profile file]
EXAMPLE.PCPres [Result file]
EXAMPLE.PCPscore [Score file]
EXAMPLE.PCPavg [Average scores for motifs and database file]
EXAMPLE.PCPexcl [Sequence numbers eliminated during scoring as they are
short]

 24

9 PROGRAMER GUIDE(Version 1.0)*
* Software design document of version 2.0 will be provided soon.

9.1 MODULES AND ROUTINES
PROGRAM MODULE SUBROUTINE
PCPMer

 motifmaker.pm
 makeprofile
 fullprofile2motif
 adjuststraymotif
 motiflist2profile
 evalmotiflist
 autoevalparam
 convert
 mean
 standard_dev
 calcentropy
 motifscorer.pm

 readprofile

 readfastatostrings

 readmultipletostrings

 parseprofile

 scoreprofiledatabase

 scoreprofilemultialign

 finalscoreout

 sortDindex

 mean

 standard_dev

 scoreprofilestring

 findmax

 multialign.pm
 readmalign

 filtermalign

 pairid

 formatmalign

 vectorlib.pm

 errormsg.pm

 25

9.2 FLOWCHART OF PROGRAM OPERATION

multialign.pm

USER

Multiple Alignment
Database of Sequence in FASTA

RGL Params.

PCPMer

PCPMotifmaker PCPMotifminer

errormsg

vectorlib

 26

9.3 MODULE AND SUBROUTINE DETAILS
PROGRAM 'PCPMer'
FUNCTION Front engine and simple user interface
INPUT Multiple alignment, Database file, RGL parameters.
OUTPUT FILE EXT. DESCRIPTION
 .PCPlog Log file
 .PCPgprf Global profile
 .PCPlist Stringed list of motifs
 .PCPprf Motif profile
 .PCPscore Highest scoring windows of each motif
 .PCPres Top x scoring sequences in the database

VARIABLES NAME DESCRIPTION
 @files List of PCPM files
 $response_maln Multiple alignment filename
 @m_aln_data Multiple alignment data in array
 $response Name for the project
 $user_R_value User defined relative entropy cutoff
 $user_L_value User defined L-value cutoff
 $user_G_value User defined G-value cutoff
 $global_prf Reference to global profile
 $motif_N_list Reference to numbered motif list
 $motif_S_list Reference to stringed motif list
 $motif_prf Reference to motif profile
 $temR Response to continue motifminer
 $response_dbase Database file name
 $filter_opt Filter option (0 - raw, 1- average, 2- above

cutoff)
 $cutoff_opt User specified score cutoff
 $seqnamedb Reference to sequence name
 $seqstringdb Reference to sequence strings
 $TrueAvg Average scores of all motifs in true positives
 $TrueStd Standard deviation of all true positives
 $DataAvg Averages scores of motifs in all database

sequence.
 $FinalOut Top x sequences ranked according to the

filter.

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 27

MODULE 'errormsg.pm'
FUNCTION To detail error and warning messages when caught
INPUT/OUTPUT Package 'errormsg' should be called to use any subroutine
SUBROUTINE ‘errmsg’
VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

SUBROUTINE ‘errmsg’
FUNCTION Provides suitable error messages upon external call using a

number.
INPUT/OUTPUT Input is a three-digit number. First number indicates the type

of error. 1XX errors in input 2XX errors in output 3XX
overflow errors. 4XX unknown errors.

PSEUDOCODE Uses a hash that stores error messages for a three number key.
VARIABLES '%errormsg' hash that contains error messages

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 28

MODULE 'vectorlib.pm'
FUNCTION Contains amino acid parameters and supplies these params upon

call.
INPUT/OUTPUT Package 'vectorlib' should be called to use any subroutine
VARIABLES NAME A DESCRIPTION
 %vectorX E PCP descriptor X for all 20 AA. Single letter

AA is KEY. X = 1..5
 %natfreq{}[

]
E Provides magnitude of the vector in different

bin for naturally occurring AA. Example PCP
vector 2 magnitude in bin 1 is $natfreq{2}[1];

 %range{}[] E Provides range of vector magnitude for binning.
Example PCP vector 2 in the Ist bin is
$range{2}[1] to range{2}[0]

 @natfreq E Natural frequency of amino acid occurrence. 20
in order.

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 29

MODULE 'multialign.pm'
FUNCTION To read and format multiple alignment in clustalw format
INPUT/OUTPUT Package 'multialign' should be called to use any subroutine
SUBROUTINES NAME A DESCRIPTION
 &readmalign E Reads in an array reference containing clustalw

file
 &filtermalign E Filters multiple alignment based on %id cutoff

with respect to first sequence.
 &pairid I Calculates pairid between two strings excluding

gaps
 &formatmali

gn
I Reformats multiple alignment after removing

redundant seq.

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 30

SUBROUTINE 'readmalign'
FUNCTION To read in a multiple alignment in clustalw format.
INPUT Reference to an array containing clustalw file
OUTPUT Reference to arrays containing 1. sequence name 2. sequence

string
PSEUDOCODE Read in the array reference for multiple alignment

Check for clustalw format
Split data lines into sequence name and sequence string.
Append all sequence string of single sequence identified by name.
If there is 1 or 2 sequence only than call error
If the sequence string are of different lengths call error
If the sequence string contains non-standard amino acid codes than
raise error
Return array references for sequence name and string.

VARIABLES NAME DESCRIPTION
 $input Reference to input multiple alignment
 $i Increment counter for the sequence
 @dataline Each line of the multiple alignment
 @seqname Array of sequence names
 @seqstring Array of sequence strings corresponding to

sequenenames
 %seqdat Hash that has sequence name as key and sequence

strings as value

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 31

SUBROUTINE 'filtermalign'
FUNCTION To filter those sequences that have higher percentage identity

above cutoff specified
INPUT Reference to an array containing clustalw, percentage id cutoff and

internal subroutine calls
OUTPUT Array references to list of sequence names and sequence strings

after reformat
PSEUDOCODE Read the mutliple alignment

Split the data into sequence names and sequence strings
Calculate pairwise identity scores excluding gaps for all sequences
Remove sequences that exceed above the specified cutoff using
first sequence as reference.
Reformat the sequence strings (like removing '-' if exist in all
sequences)
Return references to new arrays containing sequence name and
sequence strings.

VARIABLES NAME DESCRIPTION
 $input Reference to input multiple alignment
 $idcut Identity cut off
 $seqname Reference to array containing sequence names
 $seqstring Reference to array containing sequence strings
 &readmalign Subroutine that reads multiple alignment
 &pairid Subroutine to calculate pairwise sequence id
 %remove Flag those sequences that have sequence id

greater than id cutoff
 $count1 Sequence counter
 $count2 Sequence counter
 @seqname1 Array containing unflagged sequence name
 @seqstring1 Array containing unflagged sequence string
 $seqname2 Reference to array containing sequence name

after reformat
 $seqstring2 Reference to array containing strings after

reformat
 &formatmalign Reformats strings (removes '-')
 &errmsg Raise an error message

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 32

SUBROUTINE 'pairid'
FUNCTION Calculates pair-wise identity
INPUT Input two strings
OUTPUT %id
PSEUDOCODE ??Read in two sequences

??Apply checks to make sure lengths of the string are equal
??Identify matching alphabets at different positions
??Divide identical positions/(number of non '-' positions)

VARIABLES NAME DESCRIPTION
 $string1 Variable containing first string
 $string2 Variable containing second string
 $count1 Position counter of each string
 $idcount Count identical residues in both string
 $strlengthminus Count number of gaps in any sequence

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 33

SUBROUTINE 'formatmalign'
FUNCTION Excludes gaps that are common in all position and reformats

multiple alignment
INPUT Reference to array containing sequence names and strings
OUTPUT Reformatted array reference containing sequence names and

strings
PSEUDOCODE ??Read sequence strings

??Run the position counter
??For each position extract one letter from each sequence string
??If all the position in the strings are gaps than exclude from new

sequence strings
VARIABLES NAME DESCRIPTION
 $inputname Array reference to sequence names
 $inputstring Array reference to sequence strings
 $count1 Sequence name counter
 $count2 Sequence name counter
 $i Original sequence position counter
 $temp Temporary string (column from maln) holder
 $gap Holds a gap string no_of_seq x "-"
 @tempstr[A][B] Holds the residues at position B of seq A
 @splitstr Array contains all positions of maln
 $j New position incrementer
 $k New position counter
 $tempstr Concatenates new position for a sequence
 @seqname2 Name of the sequence
 @seqstring2 New strings after eliminating

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 34

MODULE 'PCPmotifmaker'
FUNCTION To create motif from multiple alignment using empirical

parameter
INPUT/OUTPUT Package 'PCPmotifmaker' should be called to use any subroutine
SUBROUTINES NAME A DESCRIPTION
 &makeprofile E Makes global profile with multiple alignment
 &fullprofile2

motif
E Uses empirical parameters RGL to make

motif from global profile
 &motiflist2pr

ofile
E Uses a list to extract profile from global

profile
 &autoevalpar

am
E Evaluates different param combination to

select optimal RGL
 &adjuststray

motif
E Adjusts stray motifs defined using RGL by

redistributing residues to the defined motifs
that are lesser than d specified

 &evalmotiflis
t

I Evaluates whether the current motif list has
motifs greater than 30 residues

 &convert I Converts AA one letter code into vector and
computes average, std. and rel. entropy

 &mean I Calculates mean of the array
 &standard_de

v
I Calculates standard deviation of the array

 &calcentropy I Calculates relative entropy
 &samp_mean I Calculates average using N-1

 &sam_standa

rd_dev
I Calculates sample standard deviation

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 35

SUBROUTINE 'makeprofile'
FUNCTION To make a global profile of a multiple
INPUT Array reference to sequence name and sequence strings
OUTPUT Reference to global profiles that has headers.
PSEUDOCODE Read sequence string and name

Iterate each position of the multiple alignment and obtain AA in a
column
Convert each of the AA code in to PCP descriptors or vectors 1-5
Calculate average, standard deviation and relative entropy
Calc. the number of gaps, position and residue index of the 1 res

 Print profile [GLOBAL]
VARIABLES NAME DESCRIPTION
 $inputname Array reference to sequence names
 $inputstring Array reference to sequence strings
 $i Position index multiple alignment
 $j Residue index of first sequence
 @temp Non '-' column string for each residue index

of the first sequence.
 $gap Number of gaps in a particular column

corresponding to residue index of first
sequence.

 $vectorX Magnitude of vector X averages correponding
to column string. X varies from 1 ..5

 $vectorsdX Standard deviation of vector X correponding
to column string. X varies from 1 ..5

 $rentropyX Relative entropy of vector X correponding to
column string. X varies from 1 .. 5

 &convert Subroutine that converts string correponding
to a column (no '-') in to average, std and rel.
entropy

 $temps Formatted string that has the following
format.
1] position 2]maxseq 3]nongaps 4]
pos.no.of1stseq 5]resname
6] avg1 7]avg2 8]avg3 9]avg4
10]avg5 11-15]std 16-20]relativeentropy

 @profile Array of global profile

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 36

SUBROUTINE 'fullprofile2motif'
FUNCTION Convert global profile into motif list using RGL
INPUT Array reference to global profile, R cutoff, G cutoff, L cutoff
OUTPUT Array reference to Motif list
PSEUDOCODE Read input global profile, R, G and L.

Mark all singificant datalines{profile} that have relative entropy
greater than or equal to R
Calculate residue index difference [4th column] for two sequential
singificant profiles
If the difference is less than G then concatenate to the motif.
If the difference is greater than G then start a new motif.
Calculate the size of each motif (end res. position - start res
position). If it is lesser than L

Then add to stray motif list
VARIABLES NAME DESCRIPTION
 $inputarray Array reference to global profile input
 $R R cutoff
 $G G cutoff
 $L L cutoff
 @elements Array containing elements of a profile
 @signif Array containing profile positions that are

significant
 $i Array index for significant position
 $motifstring String of profile index that consititutes a motif
 @motif Stores motif strings
 $k Index for motifs
 @elementcount Number of significant position in the motif
 @motiflist Array containing list of motifs
 $straymotif String of loose significantly conserved sites

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 37

SUBROUTINE 'adjuststraymotif'
FUNCTION Adjusts stray motifs that were not included as a motif in the first

pass
INPUT Reference to motif list, New G cut off that can be allowed
OUTPUT Modified motif list
PSEUDOCODE Read in the motif list and new G

 Calculate difference of residue between first and last residues of
each motif and a member of stray motiflist
 If the difference is less than G then add to motif (either first or
last) where the difference is less

 Return reference to new motiflist
VARIABLES NAME DESCRIPTION
 $inputlist Array reference to input motif list
 $allowgap New G-cutoff value
 @strayelem Array containing stray elements
 $i Array index for stray elements
 $min Arbitray number set to 1000 to reduce and

find min
 $j Array index for motif list
 @storeA Stores all residue positions for each motif
 $fit Absolute difference between end or first

residue and stray element
 $point String containing a flag to indicate whether

the stray element is close to the start (0) or
end (1)

 @tempA Array containing element of flag and stray
element and motif

 $stray New stray motif string after adjusting
 @newlist Array of new motif list

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 38

SUBROUTINE 'motiflist2profile'
FUNCTION Converts motif list into motif profile
INPUT Reference to array containing global profile and a list OUTPUT
OUTPUT Reference to array containing motif profile and an AA list.
PSEUDOCODE Read array reference to the input profile and list

Extract residues in the list from global profile
 For every motif include the details of motif number and residue

VARIABLES NAME DESCRIPTION
 $inputprofile Array reference to the profile
 $inputlist Array reference to the input motif list
 @storeA Array reference to the input motif list
 @storeB Array to store profile
 $i Index for motifs
 @temp Array containing elements of each motif
 $tempS Temporary string that holds residue name

corresponding to each element
 $j Index for motif elements
 @tempt Array containing individual element of a

profile
 $tempX String containing profile of each motif

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 39

SUBROUTINE 'evalmotiflist'
FUNCTION Evaluates whether a motif list has length greater than 30 residues
INPUT Array reference to motif list.
OUTPUT Flag indicating Motif is not too long.
PSEUDOCODE Read input list

Check the length of motif (last residue position - 1st residue
position) is less than 30

VARIABLES NAME DESCRIPTION
 $inputlist Array reference to input list
 $i Index for motif
 @temp Array containing elements of each motif
 $flag Flag to indicate whether length is greater than

30 residues (-1)

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 40

SUBROUTINE 'autoevalparam'
FUNCTION To find optimal RGL combinations to define motifs automatically
INPUT Array reference to motif profile
OUTPUT Optimal RGL parameters
PSEUDOCODE Iterate through different combinations of RGL

For each combination evaluate whether all motifs are less than 30
residue

VARIABLES NAME DESCRIPTION
 $inputprofile Array reference to input profile
 @Rvalues Array containing list of R values
 @Gvalues Array containing list of G values
 @Lvalues Array containing list of L values
 $tempR R value holder
 $tempG G value holder
 $tempL L value holder
 $templist Reference to motif list
 &fullprofile2motif Subroutine to convert global profile into

motif
 $tempres Flag to indicate accept (0) or reject (-1)

current RGL param
 &evalmotiflist Subroutine to evaluate the fitness of the

motif list

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 41

SUBROUTINE 'convert'
FUNCTION To convert an string of AA code into different vector average, std.

dev. and relative entropy
INPUT String of amino acid and vector number
OUTPUT Average, standard deviation and relative entropy
PSEUDOCODE Obtain string and parse it into single letter

Use vector library to convert it in to number
Calculate average, standard deviation, relative entropy for each
vector

VARIABLES NAME DESCRIPTION
 $inputprofile Array reference to input profile
 $inputvec Vector number
 $temp String that can be evaluated to obtain the

correct vector
 @newarray Contains vector values
 %vectorX{} Vector values from module `vectorlib.pm'

for X=1..5
 &mean Subroutine to calculate mean
 &standard_dev Subroutine to calculate standard deviation
 &calcentropy Subroutine to calculate relative entropy

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 42

SUBROUTINE 'mean' 'samp_mean'
FUNCTION To calculate average of an array of numbers (or N-1 for

samp_mean)
INPUT Array reference containing numbers
OUTPUT Average value
PSEUDOCODE Obtain numbers in the array

Add them and calculate average
VARIABLES NAME DESCRIPTION
 $arrayref Array reference to input number array
 $result Summed value of all array

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 43

SUBROUTINE 'standard_dev' 'samp_standard_dev'
FUNCTION To calculate standard deviation of an array of numbers (NOT

SAMPLE)
INPUT Array reference containing numbers
OUTPUT Standard deviation
PSEUDOCODE Obtain numbers in the array

Add them and calculate average
VARIABLES NAME DESCRIPTION
 $arrayref Array reference to input number array
 $result Summed value of all array
 $deviation Standard deviation

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 44

SUBROUTINE 'calcentropy'
FUNCTION To calculate relative entropy of an array of vector values
INPUT Array reference containing numbers
OUTPUT Relative entropy
PSEUDOCODE Obtain numbers in the array and vector number

Calculate background value using natural frequency distribution of
amino acid in a range
Calculate relative entropy using standard formula over the five bins

VARIABLES NAME DESCRIPTION
 $arrayref Array reference to input number array
 $vectorval Summed value of all array
 $i Index for original array of numbers
 $range{A}[] Boundary of magnitude for vector A that

defines bins. Value defined in 'vectorlib.pm'
 $counteX Counts number of occurrence of AA vector

values for bins X = 1..5
 @obsf Array of observed frequency within five

bins
 $j Index for bins
 $rentropy Relative entropy

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 45

MODULE 'PCPmotifminerr'
FUNCTION To score motifs against a database and select top hits using filter
INPUT/OUTPUT Package 'PCPmotifminerr' should be called to use any subroutine
SUBROUTINES NAME A DESCRIPTION
 &readprofile E To read motif profile
 &readfastatos

trings
E To read fasta files and convert each sequence

into a linear string
 &readmultipl

etostrings
E To read multiple alignment and convert into

strings
 &parseprofile E To parse individual profile that can be used

for searching
 scoreprofiled

atabase
E To score profile against a defined database

 &scoreprofile
multialign

E To score profile against TRUE sequences

 &finalscoreo
ut

E To score each sequence in the database using
a combined score

 &sortDindex I To sort highest score
 &mean I To calculate average
 &standard_de

v
I To calculate standard deviation

 &scoreprofile
string

E To score profile against a string of AA
alphabets

 &findmax I To find the index of an array of number that is
maximum

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 46

SUBROUTINE 'readprofile'
FUNCTION To read motif profile file
INPUT Array reference to profile data
OUTPUT Array reference to profilelengths and individual profile
PSEUDOCODE Read motif profile

Split individual profile using motif separator
VARIABLES NAME DESCRIPTION
 $dataprofs Array reference to motif profile
 @allsplt Array containing elements of motif profile
 $profnum Motif number
 $maxprof Maximum motif number
 @proflength Length {number of significant residues} of

a motif
 $cce Index for the residues in a motif
 %profile{A}[B] Hash containing motif number A and profile

index B

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 47

SUBROUTINE 'readfastatostrings'
FUNCTION To read FASTA file
INPUT Array reference to fasta data
OUTPUT Array reference to sequence names and sequence strings
PSEUDOCODE Read FASTA file

Concatenate sequence strings and parse all sequence names
VARIABLES NAME DESCRIPTION
 $data Array reference to fasta data
 $i Sequence index
 $seq String containing the sequence
 @sequen Array containing all sequence strings
 @name Array containing all names

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 48

SUBROUTINE 'readmultipletostrings'
FUNCTION To read multiple alignment file and convert in to array
INPUT Array reference to multiple alignment
OUTPUT Array reference to sequence names and sequence strings
PSEUDOCODE Read multiple alignment file

Concatenate sequence strings and parse all sequence names
VARIABLES NAME DESCRIPTION
 $input Array reference to multiple alignment data
 @checks Array containing elements of each row of

multiple alignment
 %seqdat Hash containing sequence string as a value

and sequence name as a key
 $i Sequence index
 @seqstring Array containing all sequence strings
 @seqname Array containing all names

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 49

SUBROUTINE 'parseprofile'
FUNCTION To parse motif profile in to individual file
INPUT Array reference to motif profiles, Array reference to motif lenghts,

Motif number
OUTPUT Array reference to single motif profile
PSEUDOCODE Read motif profiles,motif lenghts,motif number

Parse motif profiles and identify profiles that belong to a single
motif required

VARIABLES NAME DESCRIPTION
 $motifprofileref Array reference to motif profiles
 $motiflengthref Array reference to motif lengths
 $motif Motif number
 @motifdata Array containing motif profile of motif

$motif

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 50

SUBROUTINE 'scoreprofiledatabase'
FUNCTION To score a motif profile against sequences in a database
INPUT Array reference to motif profile, Array reference to sequence data,

Array reference to true positive average, Array reference to true
positive standard deviation

OUTPUT List of scores for highest scoring window for each profile for
every sequence

PSEUDOCODE Read motif profiles and sequences
For each sequence obtain string of window size equivalent to that of
a motif
For each motif and window score using the scheme developed
Record the highest scoring window in a sequence

VARIABLES NAME DESCRIPTION
 $dataarray1 Array reference to motif profiles
 $dataarray2 Array reference to motif lengths
 $TRUavg Array reference to true average of all motifs
 $TRUstd Array reference to true std.dev of all motifs
 $temp5A Array reference to motif profile
 $temp5B Array reference to motif list
 $temp6A Array reference to sequence name
 $temp6B Array reference to sequence strings
 $motifn Index for motifs
 $temp7 Array reference to single motif profile
 $seqn Index for database sequence
 $temp8 Highest scoring window details for a string

and profile {SCORE POSITION STRING}
 $tempstring String formatter [# {SCORE POSITION

STRING} MOTIFNUM SEQNUM
SEQNAME #] {} elements returned by
'&scoreprofilestring'

 @motifRES1 Array to store highest scoring window of all
sequences for a motif

 @tempdat Array of elements for each in motifRES1
 @scoredata Array of highest scores for a particular

motif
 $average Average score for a motif for a database
 $Effectivescore1 Combined score (Sx) for each motif
 $temp String to hold effective score.
 &readprofile Subroutine to read profile
 &readfastatostrings Subroutine to read fasta file
 &parseprofile Subroutine to parse profile
 &scoreprofilestring Subroutine to score a profile against string
 &mean Subroutine to calculate average

 51

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

SUBROUTINE 'scoreprofilemultialign'
FUNCTION To score motif profiles against sequences in the mutliple

alignment
INPUT Array reference to motif profiles, Array reference to multiple

alignment
OUTPUT Array reference to average and standard deviation of True positive
PSEUDOCODE Read motif profiles and multiple alignment

Convert each multiple alignment into sequence strings
Score each profile against strings and record highest scores
For each motif calculate average and standard deviation.

VARIABLES NAME DESCRIPTION
 $dataarray1 Array reference to motif profiles
 $dataarray2 Array reference to motif lengths
 $TRUavg Array reference to true average of all motifs
 $TRUstd Array reference to true std.dev of all motifs
 $temp5A Array reference to motif profile
 $temp5B Array reference to motif list
 $temp6A Array reference to sequence name
 $temp6B Array reference to sequence strings
 $motifn Index for motifs
 $temp7 Array reference to single motif profile
 $seqn Index for database sequence
 $temp8 Highest scoring window details for a string

and profile {SCORE POSITION STRING}
 $tempstring String formatter [# {SCORE POSITION

STRING} MOTIFNUM SEQNUM
SEQNAME #] {} elements returned by
'&scoreprofilestring'

 @motifRES1 Array to store highest scoring window of all
sequences for a motif

 52

 @tempdat Array of elements for each in motifRES1
 @scoredata Array of highest scores for a particular

motif
 $average Average score for a motif for a database
 $Effectivescore1 Combined score (Sx) for each motif
 $temp String to hold effective score.
 &readprofile Subroutine to read profile
 &readfastatostrings Subroutine to read fasta file
 &parseprofile Subroutine to parse profile
 &scoreprofilestring Subroutine to score a profile against string
 &mean Subroutine to calculate average

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 53

SUBROUTINE 'finalscoreout'
FUNCTION To output the highest combined scoring sequences using filters
INPUT Name of score file, highest number of x sequences required, Filter

option, Cutoff (for Filter option 2), Average TP, Average DB.
OUTPUT Array reference to top scoring sequences
PSEUDOCODE Read motif profiles,motif lenghts,motif number

Parse motif profiles and identify profiles that belong to a single
motif required

VARIABLES NAME DESCRIPTION
 $dataName Score data file name
 @dataA Array containing data
 @temp Elements of each row of data red
 $vv String containing sequence information
 $k Index for data element
 @addscore Array containing combined score for each

sequence
 @namedetails Array containing sequence details
 $newID Array reference to index of array that is

sorted in decreasing order
 $i Iterator for top x sequences
 &sortDindex Subroutine to sort an array according to

numerical decreasing order
 $Option Type of filter to apply 0) Raw ranking

1)Include motifs score greater than mean of
Averages 2) Motif scores above a cutoff

 $ScoreCutoff Cutoff score above which you want to
include as a motif hit

 $Truemean Array reference to average scores for motifs
in true positive sequence

 $Datamean Array reference to average scores for motifs
in the database

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 54

SUBROUTINE 'sortDindex'
FUNCTION To output the index of an array after sorting the elements in

numerical descending order
INPUT Array reference to an array containing scores.
OUTPUT Index of sorted scores in decreasing order
PSEUDOCODE Read array that contains scores

 Sort the array numerically
VARIABLES NAME DESCRIPTION
 $data Array reference to an array containing

scores
 @newIndex Index in the sorted order

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

 55

SUBROUTINE 'scoreprofilestring'
FUNCTION To score a motif profile against a sequence of string and report the

highest scoring window.
INPUT Array reference to motif profile and the sequence string.
OUTPUT Highest score, window position, window string.
PSEUDOCODE Read the profile and the string

Determine the length of the profile that should be used as the
window
Obtain chunks of string from each scanning window and score
profile against it

 Determine the highest scoring window
VARIABLES NAME DESCRIPTION
 $profiledata Array reference to a motif profile data
 $fastastring Fasta sequence string
 $entropy Entropy cutoff
 $sdwt Standard deviation weight
 @temp Profile elements
 $startvalue Staring residue position of a motif
 $finalvalue Last residue position of a motif
 $length Length of a motif
 $seq Position iterator for the fasta sequence
 $seqstring Sequence string chunk defined by scanning

window
 $s1 Score for each significant vector additively
 $s1max Maximum score possible for each vector
 $epsilon Shift factor
 $i Iterator for motif profile data
 @val Elements in each row of motif profile data
 $profileshift Shift in the current residue position in a

motif
 $aa Residue at a particular position in one letter

code
 $zfract Fractional z score
 $vectorx{} Vector values defined in the 'vectorlib.pm'

x= 1..5
 $temp String containing score, position and string

information
 @alldata Collects all $temp
 @sscore Array of scores
 $max Maximum score
 $maxindex Index of maximum score
 &findmax Subroutine to find the maximum score

 56

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

SUBROUTINE 'findmax'
FUNCTION To the index and highest score of an array {simple

implementation}
INPUT Array reference to an array containing scores
OUTPUT Highest score and its index
PSEUDOCODE Read array that contains scores

Sort the array numerically
VARIABLES NAME DESCRIPTION
 $scoredata Array containing scores
 $max Maximum value
 $maxindex Index of maximum value

VERSION HISTORY
Current Version 1.0
Release date 01MAR03
Written by Venkatarajan S. Mathura
Details of modification
(date/author)

